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Abstract

This thesis presents a general algorithm for the representation and approximation of

blending surfaces between two non- uniform rational B-spline (NURBS) surfaces using

surfaces of the same class. The algorithm permits the approximation of blending

surfaces with up to curvature continuous boundary conditions along the intersection

of the blending surface with the primary surfaces to be joined. These intersections

are called the linkage curves.

The blending surfaces are approximated by low degree B-spline surfaces, created

using a lofting method. Isoparameter curves of the approximating blending surface

are constructed based on differential geometry properties of the underlying surfaces.

First derivative properties are required to satisfy tangent plane continuity bound-

ary conditions. To satisfy curvature continuity conditions, the cross-link curves are

constructed to match the curvature of a normal section of the underlying surface at

the end point of the cross-link curves on the linkage curves. An adaptive sampling

procedure is used to improve the approximation.

Finally, the algorithm is applied to the practical problem of designing a fillet for

the intersection of a marine propeller blade with a hub. An adaptation of the method

which creates a standard marine propeller fillet automatically is also presented.
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Title: Associate Professor of Ocean Engineering
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Chapter 1

Introduction

The shape of objects used in engineering applications reflects both functional re-

quirements and manufacturing processes. Assemblies may be made of parts with

simple geometric shapes because of the manner in which they interact, such as shafts

and bearing surfaces, or because it is convenient to manufacture them in that manner.

On the other hand, complicated sculptured surfaces may be required to satisfy func-

tional requirements such as hydrodynamic or structural performance specifications.

There are also aesthetic reasons for choosing a particular shape.

When parts are assembled into the final structure, sharp edge intersections often

arise. When these edges and intersections are internal to the assembly, or concave.

they can cause stress concentrations or initiate flow disturbances. When they are

external projecting features, they can pose safety hazards. To address these problems,

a smooth transition surface is usually provided. These secondary surfaces are called

blends.

In traditional design and manufacture, blending surfaces occur as the by-product

of the limitations of the tools and processes used in their production. As such they

are often referred to as engineering surfaces rather than design surfaces. Examples

include the minimum radius of a cutting tool in the machining of parts, and forming

limitations of casting, forging and pressing processes. If a smooth surface is required.





fabrication guidelines are usually given to achieve the desired effect. Consider, for

example, the junction of two machined surfaces. The designer can specify the size

of the ball-end mill used to form the junction and can define check surfaces which

bound the movement of the cutter. A blending surface of circular cross-section will be

produced between the check surface and the machined surface. The disadvantage of

this technique is that the designer is unable to completely analyze the performance of

the surface because a portion of the geometry of the surface is unavailable in explicit

form. Further, the resulting blending surface is an interpretation of the manufactur-

ing instructions, completely dependent on the skill and experience of the machinist.

Modern computer aided design and manufacturing technology increasingly empha-

sizes automation of processes and, therefore, relies on the explicit representation of

the entire surface of an object, including secondary blending surfaces.

This thesis examines algorithms for the representation and approximation of

blending surfaces. A general blending surface is a surface which provides a smooth

transition between different, but intersecting surfaces, or is one which smoothly joins

two or more disconnected surfaces. Blending surfaces are often required on edges

and at corners and joints. The principal characteristic of a blending surface is that it

provides a smooth transition between the surfaces that it joins, and that it joins these

surfaces with some specified degree of continuity. The exact shape of the interior ot

the blending surface is usually less important than the manner in which it joins the

principal surfaces.

While some applications simply require the presence of a blending surface, others

may have functional requirements, such as the joint between an aircraft wing and

the fuselage, the bulbous bow and hull of a ship, or the blade and hub of a marine

propeller. When the blending surface plays a part in the ultimate performance of

the component, it becomes a design surface which must be accurately specified in the

design process. If the surface is left as a traditional by-product type of surface, the

designer can not guarantee the performance of his design.
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Having established the need for the explicit representation of blending surfaces,

the general characteristics of such a method are considered. The method should:

• be applicable to a wide range of geometric shapes and configurations. It must

be able to join simple planar surfaces, algebraic surfaces such as quadrics. tori,

and surfaces of revolution, and complex free-form surfaces.

• be predictable in its use so that it can be automated. Given that, it must

also offer sufficient flexibility so that the designer can manipulate the blending

surface in regions where problems arise.

• allow tangent plane continuity along a common boundary between surfaces.

• allow surface curvature continuity, if required, across a common boundary.

• allow comparison of the surface position and differential properties along the

common boundary for verifying continuity of the required degree.

• generate blends of a local nature. The method should not alter the global

geometry of the surfaces to be joined.

• allow high accuracy approximation to make possible the integration of blend-

ing surfaces in modern geometric modellers and to address the need for high

accuracy manufacturing operations.

In this thesis, a general method for the representation and approximation of blend-

ing surfaces which join two non-uniform rational B-spline (NURBS) surfaces with a

surface of the same class is implemented. NURBS surfaces were chosen to repre-

sent the primary and the blending surfaces because the form provides a general,

unambiguous mathematical representation able to represent a wide range of surfaces.

Additionally, there are complete standard data formats for NURBS surfaces which

provide for the direct exchange of geometrical information between different geometric

modelling, design and manufacturing systems [Smith 88].
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To better understand the method, a brief description of some useful terms is

provided:

underlying surfaces. Two or more surfaces which are to be joined in a smooth

manner. These surfaces are also known as primary surfaces.

linkage curve. A curve which defines the extent of the blending surface on the

surface to be joined. The linkage curve is the intersection of a primary surface

and the blending surface.

cross-link curve. A planar curve which connects corresponding parameter values

on each linkage curve. The cross-link curves form a family of curves from which

the blending surface is lofted.

directional curve. A curve in three-dimensional space which determines the orien-

tation of the cross-link curves, given the endpoints determined by the linkage

curves.

bias functions. A control parameter which the designer may use to influence the

shape of the interior of the blend. Bias functions typically affect the first partial

derivatives of the blending surface across the linkage curves.

boundary conditions. The degree of continuity with which the cross-link curves

and the resulting blending surface join the underlying surfaces.

Figure 1.1 illustrates the relationships of the supporting curves.

The algorithm approximates the blending surface with an integral B-spline surface

which is up to curvature continuous to the underlying surfaces. The linkage curves are

approximated to within a specified tolerance and the knot vectors are merged. The

cross-link curves are created using the common knot vector of the linkage curves, the

directional curve, and the parametric partial derivatives of the underlying surfaces,

up to second order, if required by the boundary conditions. The cross-link curves are
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DIRECTIONAL
CURVE

LINKAGE CURVES

CROSS-LINK CURVES

Figure 1.1: Components of a blending surface

then lofted to form the blending surface. An adaptive sampling procedure is used to

test the blending surface against specified tolerances. Cross-link curves are added,

where necessary, and the surface relofted until the boundary conditions are satisfied.

A significant contribution of the algorithm is the degree of control provided to the

designer over the boundary conditions along the linkage curves. Most blending algo-

rithms permit position and tangent plane continuity across the boundaries. Position

continuity is important for ensuring the blending surface in fact joins the underly-

ing surfaces. By itself, however, position continuity cannot ensure smooth transition

surfaces. Tangent plane continuity is the most common type of boundary condition

requirement, and is adequate for most applications. Indeed, [Mortenson 85] observes

that most mechanical parts have rounded edges which blend into planar faces for

which tangent continuity is sufficient. For more complicated surfaces such as sculp-

tured or free-form surfaces, there can exist significant curvature discontinuities along

such a boundary. For aerodynamic and hydrodynamic surfaces, curvature discon-

tinuities can lead to undesirable discontinuites of fluid particle accelerations. The
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algorithm given in this thesis allows the accurate approximation of curvature con-

tinuous blending surfaces for both simple and complex underlying surfaces. One of

the features of the algorithm we developed, contributing to its flexibility, is that the

boundary condition along one linkage curve is independent of the boundary condition

specified along the other linkage curve. It is possible, for example, to represent a

blending surface which is curvature continuous along one boundary while being only

position continuous along the other.

The creation ol complete geometric models of complex structures encountered in

marine applications has been an area of particular interest in the MIT Ocean En-

gineering Design Laboratory. For an application of the algorithm we examined the

creation of blending surfaces between marine propeller blades and hubs. Increasingly

demanding performance requirements coupled with more complex shapes are forc-

ing marine propeller manufacturers to use numerically controlled (NC) machining in

place of traditional hand-finishing methods. While the use of NC machining has the

advantage of repeatability between components, improved performance, and reduced

unit production costs, it requires an explicit mathematical representation of the en-

tire component. An area of particular concern in the design and representation of

marine propellers is the junction of the propeller blade with the hub. This sharp

edge intersection presents both structural and hydrodynamic concerns which are ad-

dressed with a feature called a fillet . The fillet is simply a blending surface which

contributes to the structural strength of the blade and helps to reduce vibrational

blade loading, while providing a smooth transition surface which joins the principal

hydrodynamic surfaces to reduce adverse hydrodynamic effects. Several examples of

marine propeller fillet blends are given to demonstrate our algorithm.

The thesis is organized as follows.

Chapter 2 presents a survey of previous work in the area ol blending surlace

representation and approximation.

Chapter 3 presents a formulation of the blending surface problem addressed in this
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work. The presentation begins with an overview of the basic steps in our algorithm

for the design and representation of a blending surface. Various types of surface repre-

sentation are considered, and our reasons for the use of non-uniform rational B-spline

(NURBS) surfaces are given in some detail. A brief review of integral and rational

B-spline curve and surface theory is included. The chapter continues with details

concerning the specification of linkage curves, directional curves and boundary con-

ditions. As noted above, the algorithm allows boundary conditions along the linkage

curves of position, tangent plane and curvature continuity. A discussion of certain dif-

ferential geometry properties of curves and surfaces necessary for the representation

of curvature continuous blending surfaces concludes the chapter.

Chapter 4 describes in detail the implementation of our method, including the

approximation of the linkage curves in terms of low-degree B-spline curves, the con-

struction of the cross-link curves, and the approximation of the blending surface by

lofting of the cross-link curves. Improvement of the blending surface through adap-

tive sampling for tangent plane and curvature continuous boundary conditions is

discussed.

The method is illustrated with a series of examples in Chapter 5. The examples

demonstrate the importance of proper parameterization of the linkage curves. Control

of the shape of the blending surface with the bias functions is illustrated, along with

two biasing methods. We end with several examples of marine propeller blends, which

serve to illustrate the practical applicability of the method in marine propeller design

and manufacturing.

The thesis concludes with a summary of the method and recommendations for

further work in Chapter 6.

Two appendices are also included.

Appendix A provides general information on marine propeller geometry and defi-

nitions of the relevant terminology to aid in understanding some of the examples.

Appendix B gives the details for our implementation of an automatic blending

15





technique for the standard 3T-T/3 marine propeller blade-to-hub fillet.
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Chapter 2

Survey of Previous Work

2.1 Introduction

Various techniques for generating blending surfaces have been reported in the liter-

ature. [Woodwark87] presents a thorough survey of earlier methods, the simplest of

which involve superficial blends. These methods consist mainly of adding attributes

to the description of an intersection between two surfaces. Since there is no explicit

representation of the blending surface, the methods have limited design value and,

in general, are only useful in providing simple manufacturing instructions. Early

techniques which do provide explicit representation of the blend surface are polyhe-

dral blending methods. Smooth edges are created on polyhedrally-defined objects

by using recursive subdivision methods to chop-off corners, or by using weighting

factors to make local topological changes. These are repatching techniques where

parts of a surface are replaced with smaller patches. Surface blending techniques ex-

tend these methods and involve the generation of free-form surfaces to smoothly join

other surfaces. The original surfaces may or may not intersect. The techniques are

primarily implicit formulations based either on Liming's method of cross-sectional

design using conic sections [Faux 79], or on potential methods such as that given

by [Hoffmann 87c]. Volumetric blending techniques are common to Constructive
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Solid Geometry (CSG) systems and Boundary-Representation (B-Rep) solid mod-

ellers [Rossignac 84] [Rossignac 85]. These methods involve the creation of new sur-

face geometry and restructure the model to incorporate topological properties to

permit further set operations on the object. The models may be either parametric or

implicit.

The following sections will discuss in some detail several current methods proposed

for blending surface generation. The discussion begins with spherical and circular

blending techniques, including the rolling ball blend, a popular technique for describ-

ing blending surfaces generated during machining (Section 2.2). Parametric surface

blending techniques which more easily deal with sculptured and free-form surfaces ap-

pear in Section 2.3. The techniques are further divided into tangent plane continuity

methods (Section 2.3.1) and methods offering higher order continuity (Section 2.3.2).

Recent work in representing blending surfaces as solutions to boundary value prob-

lems posed in terms of partial differential equations is reviewed (Section 2.3.3). as

well as energy-based variational methods of free-form surface design applicable to

the blending problem (Section 2.3.4). Finally, as a particular example of parametric

surface blending, some information is presented on the design of blade-to-hub fillets

for rational B-spline (NURBS) representations of marine propellers (Section 2.4).

2.2 Spherical and Circular Blends

As noted in Chapter 1, blending surfaces have traditionally been the by-product of

manufacture, not design. Several techniques appear in the literature to model blends

which would be produced by ball end mills or disk cutters on numerically controlled

(NC) machines. If one can model the blend in this way one might then hope to design

and represent it in a more explicit fashion.

[Pegna 87] and [Pegna 88] present methods for spherical and circular blends based

on sweep theory. Kinematically, the blend might be represented as the envelope ot
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a sphere moving while in contact with the underlying surfaces. The analogy is then

extended to sweeping a circular arc. The method is an application of generalized

cylinders, and is derived from rigid sweep theory, a class of three-dimensional variable

sweep geometric models [Pegna 87]. A swept surface is created by a planar curve or

cross section, fixed in the normal plane of the Frenet frame of a curve [Farin 88], which

is then carried along a twice differentiable space curve without stationary points or

points of zero curvature. The cross section curve is called the generatrix and the

curve which defines the frame's behavior in space is the directrix. Reduced rigid

sweeps are derived from this basic swept surface model by relaxing the requirement

that the generatrix be planar. The frame's motion is contrained to be a type of rigid

body motion known as Darboux's motion, a class of motion which occurs naturally

in the study of systems of orthogonal curvilinear coordinates. Darboux's motions

constrains the rotation of the Frenet frame as the origin of the frame translates along

the directrix. A more general class, defined as rigid sweeps, decouples the rotation of

the frame from its position, thus relaxing the Darboux rigid body motion requirement.

This technique defines the motion of the frame with two directrices, one to describe

the translation of the origin of the frame, and the other to give the orientation of

the frame relative to the translational trajectory. To complete the description, rigid

sweeps may have a variable generatrix, one which deforms as the frame moves.

[Pegna 88] proposes several blending techniques using rigid sweeps. These tech-

niques are referred to as either spherical or circular blends with constant or variable

radius. Constant radius spherical blending describes the envelope of a sphere with

constant radius R moving in contact with the surfaces. The path traced by the center

of the sphere is the directrix and is the intersection of the normal offset surfaces of

the two underlying surfaces at the same offset distance. The generatrix is an arc of

a great circle of the sphere. The same surface can be generated using a constant

radius circular blend. For a circular blend, representing a disk cutter, the orientation

of the disk must be controlled to maintain tangency with the underlying surfaces.
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This additional control represents the difference in a blend machined with a ball end

mill on a three axis machine and that of a disk cutter on a four or five axis machine.

Additional blending methods proposed allow the radius of the sphere or disk to vary.

The methods require the directrix to be C 1 continuous and that it be equidistant from

both underlying surfaces. For variable radius spherical blending this distance is the

radius of the sphere. [Pegna 87] provides detailed results of these blending techniques

and closed form solutions where possible. The blends produced ensure continuity of

position and tangent plane along the linkage curves. The implementation is proce-

dural since it requires the evaluation of the intersection of the offset surfaces to find

the directrix, and the orthogonal projection of points onto the underlying surfaces to

find the boundaries of the generatrix.

[Sanglikar 90] present a mathematical model for the rolling ball blend. The

blended surface as well as the underlying surfaces are parametric surfaces. The ap-

proach is called modulation and is similar to the spherical and circular sweep blends

of [Pegna 87] and [Pegna 88]. The technique splits the blending problem into the

design of two spatial curves, a spine and a cross section or pattern curve which corre-

spond to the directrix and generatrix, respectively. To form the modulated surface,

the pattern curve is dragged or swept along the spine. The pattern curve may or

may not deform as it moves. If the pattern curve is planar, the orientation relative

to the tangent of the spine may be varied to satisfy different boundary conditions

or other user-specified relationships. As with Pegna's methods, the surfaces to be

blended are offset a distance R along the normal vectors to the surfaces, with each

surface offset the same distance. The intersection of these surfaces forms the spine

of the blend surface, and traces the path of the center of the rolling ball of radius R.

Since the offset surfaces are defined in terms of the underlying surface parameters,

the intersection curve can also be expressed in terms of these parameters.

To define the pattern curve, a planar curve is generated which represents an arc

which is a portion of a great circle of the rolling sphere tangent at its endpoints to
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the underlying surface. The set of resulting points of tangency represent the linkage

curves referred to in other blending methods. Linkage curves, however, are never

explicitly defined. Rather, the method generates a family of planar pattern curves,

each of which is circular, of radius R, and of variable arc length. A mathematical

expression is then derived for the blend surface, expressing the patch in terms of the

spine curve parameter, the normal vectors to the surface at the linkage point expressed

in terms of the spine parameter, and a shape factor h. < h < R. For sculptured

surfaces, however, the resultant expression may be of high degree, although not as

high as an equivalent implicit model. As with [Pegna 87] and [Pegna 88]. the method

is procedural because it requires the evaluation of an offset surface intersection.

2.3 Parametric Surface Blending

2.3.1 Tangent Plane Continuity Blending Methods

[Varady 89] discusses a technique for blending parametric surfaces which has been im-

plemented in the solid modeling system FFSolid. The system operates on Boundary-

Representation (B-Rep) models and uses quadratic curves and double quadratic sur-

faces. The blending technique is implemented as one of a set of operations that

may be performed on a model and generates an explicit blend surface. The blending

surface may be operated on by any of the other solid model operations, including

reblending operations.

The technique involves the replacement of an edge or a sequence of edges by a face

or sequence of faces. This creates a smooth surface which joins the faces on either side

of the replaced edge. The set of operations includes the creation of linkage curves on

the faces adjacent to the edge, and then trimming the surfaces to the linkage curve.

The blending surface is generated by fitting a surface joining the underlying surfaces

at the linkage curves with position and tangent continuity. When a sequence of edges

is being blended, the technique permits sharp edges such as those which arise at a
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corner to remain or the edge may be smoothed. To create linkage curves a series of

points on each surface are specified. An adaptive quadratic curve fitting technique is

then used. The series of points may be selected to reproduce many types of blends.

including pseudo-rolling ball blends. In general, a point on the edge is selected and

the plane normal to the edge at that point is constructed. Points on the surfaces can

then be identified which also lie in this plane and are at a specified distance from the

point on the edge. The distance can be constant or a function of the position of the

point along the edge, and can be measured either as arc length along the intersection

curve of the plane and surface, or as an offset distance from the point on the edge. A

sorted data base is created which provides a position and corresponding unit tangent

vector for every point relative to a base datum. The linkage curve is then fit to the

data points using a least square quadratic curve segment fitting algorithm.

To complete the blend, quadratic curve segments are generated between corre-

sponding points on the linkage curves using either a normal plane or an arc-length

correspondence. This set of segments makes up a double quadratic strip, a lengthwise

double quadratic surface one patch wide, and explicitly defines the blend. The blend-

ing surface is defined using the same type of geometric elements used by the other

operations in the B-Rep modeller. All solid model operations may be performed on

the blend surface, including reblending.

[Bardis 89] presents a technique for constructing tangent continuous blends be-

tween non-uniform rational B-spline (NURBS) surface patches, using either open or

periodic linkage curves. The method approximates the blending surface by a non-

uniform, bicubic integral B-spline patch which interpolates position and normal vector

on the linkage curves at an equal number of points on both patches. They use two

methods to construct linkage curves. The first method constructs rational B-splines

in each patch parameter space by offsetting the intersection of the patches on each

patch using a variable distance along the geodesies (see section 3.3).

Another method involves specification of the linkage curves arbitrarily by the
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user as proposed by [Hansmann ST]. A further variant implemented is a combination

of the these two techniques. Once defined, the linkage curves are approximated in

three-dimensional space with a common knot vector. Using this same knot vector,

the unit normal vectors to each linkage curve, which are at the same time tangent

to the respective surface, are approximated by integral cubic B-spline curves. The

approximation technique is an iterative process which ensures convergence to within

user-specified tolerances. The resulting blend surface matches position and tangent

plane continuity along the linkage curves. The shape of the blend surface may be

controlled with user-specified bias functions. The bias functions are applied to the

unit normal vectors to the linkage curves, which also lie on the tangent plane of the

primary surfaces, and thus control the position of the control polygon vertices.

[Koparkar 91] presents a technique of curve modulation for the blending of para-

metric surfaces. Curve modulation is similar to rigid sweep theory. The important

features of general modulated surfaces are discussed with the citation for rolling ball

blends by [Sanglikar 90]. [Koparkar 91] modifies the modulation technique to design

an appropriate pattern curve at each selected point as one traces along the directrix.

The pattern curve is designed to satisfy position and tangent plane continuity re-

quirements on the underlying surfaces. The tangent directions are selected as either

perpendicular to the linkage curve, or tangent to the surface in a plane established

by corresponding points on the two linkage and the directrix. The parameterization

selected for the pattern curve is a rational form of a conic arc. A conic shape factor is

used to control the blending surface as either elliptic, parabolic, or hyperbolic. The

shape factor can further be made a function of the directrix parameter w such that

the blend varies along the directrix.

Two techniques are proposed for the design of the directrix and the linkage curves.

In the first method, the surfaces to be blended are offset along the surface normal

vectors a distance R\ and R2 . The intersections of the offset surfaces form the di-

rectrix. This is similar to the spherical and circular blending methods [Sanglikar 90],
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[Pegna 87], and [Pegna 88] but the offset distances R\ and R 2 are allowed to differ.

In the special case where R\ and R2 are equal and the pattern curve is circular, a

spherical or circular blend in achieved. The linkage curve is derived automatically

using a geometric correspondence between the normal offset surfaces and the under-

lying surfaces. A point (u.v) on an underlying surface is mapped to the same (u.v)

parameters on the normal offset surface. The intersection of the two offset surfaces is

a curve which can therefore be expressed in terms of the parameter values of either

surface. The linkage curve is defined as the mapping of the intersection curve onto

the underlying surface using the correspondence of the common parameters.

The automatic generation of the directrix and linkage curves from the user-defined

offsets at distances R x and R2 rnay not be sufficient for more complicated applications.

To provide the designer with control over the shape and position of the linkage curves,

a method employing fanout surfaces is used. Unlike the offset surface, which depends

only on the original surface, the fanout surface depends on both the surface and the

linkage curve on that surface. The fanout surface is constructed as a ruled surface

described by

P'(sJ) = P(u(s),v(a)) + t P{u{s),v{s))

where P* is a point on the fanout surface with the parameters 5 and t. P is a point

on the underlying surface with parameters u(s),v(s) describing the linkage curve in

the parameter space of the surface, and P is the unit normal vector to the surface

at P. By holding the parameter value s constant and varying t. isoparameter lines

along the surface normal vectors are obtained. The other set of isoparameter lines

is formed by holding t constant and varying s. Two fanout surfaces are constructed

from the user-specified linkage curves from both surfaces. Once again, the spine is

the intersection of these surfaces. The linkage curves are the orthogonal projections

of the directrix onto the underlying surfaces.

The methods presented by [Koparkar 91] are procedural. The offsetting technique

works well for simple blends where automatic linkage curve generation is acceptable.
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For more complex geometry the fanout surface method permits greater designer con-

trol but at the expense of greater computational complexity.

[Tuohy 91b] and [Tuohy 91c] present a method for the approximation of a blending

surface as an integral bicubic B-spline surface which is tangent plane continuous with

the underlying surfaces along the linkage curves. The method requires linkage curves

specified on both surfaces and a third space curve called a directional curve used to

control the orientation of the construction plane of the cross-link curves. The cross-

link curve establishes an isoparametric correspondence between the linkage curves,

and is similar to the generatrix or pattern curve in other cited methods. The linkage

curves are first approximated with integral cubic B-splines curves. The cross-link

curves are then constructed such that they are position and tangent plane continuous

to the underlying surfaces. The cross-link curve also lies in a plane containing a

point on each linkage curve and a point on the directional curve. The magnitude

of the tangent vectors at the ends of the cross-link curve is controlled with bias

functions. The bias functions control the shape of the cross-link curve and can be

defined independently for each boundary. Once the cross- link curves are defined, they

are lofted to create a rational B-spline surface. The process is iterative and converges

to a user-specified tolerance.

2.3.2 Curvature Continuous Blending Methods

[Hansmann 85] and [Hansmann 87] present the fundamentals of a general, interactive

method for the design of smooth transitions or free-form blending surfaces between

general surfaces with curvature continuity. As examples of free-form surfaces, inte-

gral cubic tensor product B-spline patches are used. For analytically defined surfaces,

quadric surfaces parameterized in terms of transcendental functions are used. Linkage

curves are cubic B-splines interactively defined in the parameter space of the surfaces

to be joined. Differential geometry is used to develop tangent plane and normal cur-

vature properties of the primary surfaces along the linkage curves and in a direction
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orthogonal to these curves. These properties, along with the linkage curves, provide

the boundary conditions for the connecting surface which is a lofted parametric sur-

face using cubic B-spline blending functions. The technique permits up to curvature

continuous transitions across the blending surface boundary. The blending surface

must be treated as a procedural surface, however, since the surface is irrational with

radicals of high degree polynomials.

[Pegna S9a] presents a criterion for guaranteeing second order smoothness or cur-

vature continuity for blending surfaces. Curvature continuity across a linkage curve

generally means that the normal curvatures agree in every direction at every point

along the linkage curve. There are many ways of formulating this situation, and some

of these are discussed in Chapter 3. The contribution in the paper by Pegna and

Wolter is the Linkage Curve Theorem. This theorem states that two surfaces joined

with first order smoothness, or normal continuity, along a first order continuous link-

age curve can be shown to be second order smooth if the normal curvatures on each

surface agree in one direction other than the tangent direction to the linkage curve.

There is no requirement on the direction other than it not be tangent to the link-

age curve. Furthermore, since curvature continuity is achieved by matching normal

curvatures in just one direction, the problem of constructing second order smooth

blending surfaces is effectively reduced in dimension to one of curve fairing.

Using these results, [Pegna 89] presents a method for designing blending surfaces

which ensure curvature continuity. The method is an extension of Pegna's work with

rigid sweeps cited earlier [Pegna 87] [Pegna 88]. Here, a space curve is introduced as

the directrix and is the axis of a rigid sweep. The linkage curves are constructed as

orthogonal projections of the directrix onto the underlying surfaces. An isoparametric

mapping is used to relate the two linkage curves and the directrix. Because the linkage

curves are derived from the directrix the problem of undesirable twist in the blend

caused by poor parameterization of independently designed linkage curves is reduced.

To create the blend a swept surface is used with a generatrix which has endpomts on
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the linkage curves, end tangents parallel to the surface tangents in the plane formed by

the isoparameter mapping, and end curvature such that the normal curvature of the

underlying surface and the blend is identical at the endpoint. again in the direction

formed by the isoparameter mapping. As examples, a generatrix of Bezier form is

used, with third, fourth and fifth order solutions demonstrated. The fourth and fifth

order solutions have design parameters to control the steepness of the blend at the

linkage curves. [Pegna 89] shows that the blend is curvature continuous if the directrix

and the underlying surfaces are second order continuous and the design parameters

are first order continuous functions of the directrix parameterization. Furthermore,

the isoparametric mapping ensures the end tangent vectors to the generatrix are

not tangent to the direction of the linkage curve, thus satisfying the Linkage Curve

Theorem of [Pegna 89a] to ensure curvature continuity.

2.3.3 Partial Differential Equation Blending Methods

A method for the representation of surfaces as the solution to partial differential

equations and its application to the creation of blending surfaces are described in

[Bloor 89a] and [Bloor 89b]. The blend is defined as a function which solves a bound-

ary value problem. The boundary conditions are typically the position of the blending

surface on the underlying surfaces (the linkage curves), and a number of derivatives on

the boundary as determined by the degree of continuity required between the blend

and the underlying surfaces. The blending surface is represented by the parametric

function X = X(u.v) where X is the solution to the partial differential equation

L%V{X) = F{u,v)

where L^fv is a partial differential operator of order M in the independent parameter

values u, v. The vector valued function F is generally zero for blend surfaces. The

class of operators used are elliptic partial differential equations ( PDE). The equations.
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an example of which is the minimal surface equation, are well-behaved, smoothing

functions which generally possess unique solutions without local oscillations. For

blending surface design this leads to smooth surfaces without self- intersections or

inappropriate intersections with the underlying surfaces.

In [Bloor S9a]. a second order PDE is used to create a position continuous blend.

To control the shape of the blend between the linkage curves a design parameter is

added to the PDE. The parameter permits varying the influence or the smoothing

effect of the operators in the two parametric directions. To achieve tangent plane

continuity a fourth-order PDE is given, also with a design parameter for control.

Higher order continuity is suggested (a sixth-order PDE for curvature continuity)

but not demonstrated. The examples presented involve analytic solutions involving

transcendental functions and as such have limited use in sculptured surface design.

Numerical solutions are also examined and these are expected to have a greater range

of applicability.

In [Bloor 89b], the role of the design parameters in the PDEs is examined more

closely. The nature of the elliptic PDE allows derivation of closed form solutions

to the equations provided the boundaries are properly selected. Design parameters

included in the solution permit the designer to control the magnitude and direction

of the tangent vector at the boundary. A smoothing parameter controls the relative

smoothing of the dependent variables between the parametric directions. The effect

is to control the extent of propagation of boundary effects into the interior of the

surface. Both design parameters can be either constants or functions of the surface

parameters. As functions they can be specified at either or both boundaries, and can

be either in phase or out of phase.

In [Bloor 89c], the method is extended to the generation of n-sided patches.

[WoodwarkST] briefly discusses topological problems associated with sculptured sur-

face engineering. Many common surfaces cannot be represented by a regular array of

rectangular patches. A polygonal hole will normally appear somewhere in the surface.
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Techniques which subdivide patches to solve this problem tend to relocate the hole.

but it still appears. The hole generally has n sides, where n is an integer not equal

to 4. As before, the blending surface is the solution to a boundary value problem with

elliptic PDEs. The significant adaptation is the parameterization of an n-sided region

with two parameters. The boundary conditions are carefully selected to include more

than one edge in Euclidean three-dimensional space into the isoparameter edges of the

two-dimensional mapping. Junctions are represented by singular points with certain

characteristics depending on the behavior of the underlying surfaces and their inter-

sections. The set of equations requires a numerical solution. The blending surface

which results joins multiple surfaces and edges with a single parametric patch with

no self-intersections, and, depending on the order of the PDE. satisfies any required

degree of continuity at the boundaries.

[Bloor 90] shows the PDE method may also be used for the design of free-form

surfaces. In this case the boundary conditions are used to manipulate the surface

since the designer is free from boundary and continuity conditions imposed on him

by the blending surface problem. Internal surface features which cannot be created

from the boundary data directly can be introduced by subdivision of the surface,

introducing a new boundary to provide the desired feature. An example is the hard

chine of a ship hull. A successful implementation of the PDE method would require an

interface which translates a less than intuitive PDE design parameter manipulation

into a natural design activity. In the case of blending surface design, the method may

be useful for the automatic generation of blends.

2.3.4 Energy-Based Variational Blending Methods

[Celniker 89] proposes a method of free-form surface design using energy-based surface

models. The method takes advantage of the physical fact that objects deform, when

subjected to loads and constraints, to a shape which minimizes the stored energy of the

deformation. In this respect, the method is similar to PDE methods. Surface shape
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is controlled by boundary conditions, external loads distributed on the surface, and

an energy functional. Functionals are integrals which assume maximum or minimum

values and are the basis of the calculus of variations [Fox 87]. For energy-based

surface models, an energy functional is specified which depends on surface shape.

[Celniker 89] implements the technique with parametric surfaces of the form x(aj =

[xi(a). X2(a), J3(a)], where a = [u. v}. The mapping is allowed to change with time. t.

such that the shape of the surface is described by x = x(a, t). The energy functional

selected in the work depends on the shape of the surface and yields a scalar value for

the energy of deformation.

Energy-based methods seek to minimize the internal energy of a system. By

defining a functional based on surface curvature and elongation, surfaces deform to

naturally fair shapes. Boundary conditions and position constraints may be applied

to any point on the surface. The choice and number of constraints applied at a

point give the user the means to define precisely the shape of the surface in both a

local and global manner. The shape of regions with free points (points with no or

few constraints) is controlled by application of forces or loads. The implementation

uses forces such as gravity, springs, and pressure as physically meaningful forcing

functions. Surface fairness is maintained under external loading by the internal forces

of the surface. Internal forces are found by taking the first variation of the energy

functional and setting it equal to zero.

The control of shape by minimization of surface energy might be applied to the

design of blending surfaces by constructing a parametric surface between linkage

curves on the surfaces to be joined, and applying appropriate boundary conditions.

The shape of the interior of the blend could be easily controlled by pressure loading.
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2.4 Marine Propeller Fillets

Marine propellers represent a particularly complex application of sculptured surface

design. The junction of the propeller blade with the hub presents both structural

and hydrodynamic concerns. The design of the propeller blade fillet is a particular

example illustrated in this research.

[Nittel 89] presents a method for creating a propeller blade fillet. A number of

planar sections are specified which are perpendicular to a "nose-to-tail" line, defined

as a straight line in three-dimensional space connecting the leading edge to the trailing

edge. The planar sections are also parallel to the y-axis of the coordinate system (see

Appendix A for standard propeller geometry definitions). This is somewhat unusual

since it does not take advantage of the radial nature of the propeller design. The

complexity of the blade determines the number of sections required.

Cross-link curves are faired through a small radius fillet and a large radius fillet at

points of tangency with the hub surface, the blade surface and with each other. The

cross-link curves form a set of splines which are then merged with the splines repre-

senting the rest of the propeller blade for use in determining numerically-controlled

(NC) machine tool paths and cutter instructions.

[Sabol 83] presents an analytic model for the design of propeller fillets based on

the standard 3T-T/3 fillet developed at Philadelphia Naval Shipyard. The model

was developed to provide a complete analytic definition of a blending surface which

matches as closely as possible the standard 3T-T/3 geometry. A complete analytic

definition of the fillet which is consistent with the definition of the blade surface

is required for NC machining. To develop the blade-to-hub fillet, a fillet plane is

established which includes the normal vector to the surface at the intersection of the

propeller blade with the hub, and a point located along one of the lofting lines of

the propeller blade (see [Davis 70] for an explanation of the blade lofting procedure).

The point on the lofting line is called fillet-to-blade intersection, and it is located a

distance, T. from the intersection of the blade and the hub. The T dimension is the
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local thickness and is a function of the maximum thickness of the root section and a

shape factor based on position along the blade-to-hub intersection curve. The value

of T is computed for a particular parameter u along the blade-to-hub intersection

and used to locate the endpoints of the cross-link curve on both the blade and hub

surfaces. A system of equations is solved to generate a set of points which represent

the cross-link curves. The equations have four initial conditions which define the

position and tangent directions at the endpoints of the cross-link curve in the fillet

plane. The endpoint on the blade is found along the blade lofting line at the distance

T described above. The endpoint on the hub and the tangent directions are found

using non-dimensionalized ratios based on the fillet to blade intersection. The ratios

were found experimentally to closely approximate the 3T-T/3 fillet. An iterative

process is used to find the endpoints on the two surfaces and equations are given to

solve for the tangent directions. Once these four initial conditions are known, the

system of equations is solved to represent the fillet by point data. The method is

general in that it makes no requirements on the geometry of the intersecting surfaces.

It is therefore not restricted to cylindrical or conical hub surfaces.

The work on feature extraction from B-spline marine propeller representations

[Patrikalakis 90a] is now mentioned briefly. To implement a 3T-T/3 fillet for this

thesis, a method to compute the maximum thickness of the hub-to-blade root section

was required. In [Patrikalakis 90a], a two-dimensional parametric curve is fit to the

set of points where cylinders coaxial to the propeller axis of rotation intersect the

blade section. The camber line of the curve is then generated using a system of non-

linear differential equations. The cylinder selected for use in this thesis corresponds

to the hub. It is shown that there is a critical point on the camber line and that the

maximum thickness of the blade section occurs at that critical point. Line segments

can be constructed from the suction face to the pressure face of the blade, and the

tangent vectors along the hub-to-blade intersection determined. The critical point is

the point on the camber line where the segment normal to the camber line connects
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points whose tangent vectors are parallel to each other. Taking into account the

procedure used to construct blade sections and the form of the thickness function

which exhibits a single maximum value, the propeller blade section has. in general,

only one critical point. By finding the critical point on the camber line it is therefore

possible to compute the maximum thickness of the section.
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Chapter 3

Formulation of the Blending

Problem

3.1 Introduction

The blending surface problem is the generation of a smooth transition surface between

two or more underlying surfaces. The blending surface must match user-defined

boundary conditions along user-defined boundaries. The user must be able to control

the interior shape of the blend. Finally, the surface must be of a form which permits

interrogation of the surface in and exchange between geometric modelling systems.

The tasks required to generate a blending surface are:

1. specification of underlying surfaces

2. specification of linkage curves

3. specification of a directional curve

4. specification of boundary conditions

5. construction of cross-link curves

6. approximation of blending surface
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7. improvement of approximation

The specification of the problem will be described in this chapter. The design of the

blending surface will be demonstrated in Chapter 4.

3.2 Underlying Surfaces

As noted in the Introduction (Chapter 1), smooth transitional surfaces are frequently

required in design problems, whether it be for functional reasons or merely aesthetic

ones. The utility of an algorithm for the creation of these secondary blending surfaces

lies, in part, in the types of primary or underlying surfaces the algorithm is able to

process. Our goal in this work was to specify the underlying surfaces as non-uniform

rational B-spline (NURBS) surfaces.

[Hansmann 87] introduced the fundamentals of a general system for the design

of blending surfaces between primary surfaces of different mathematical representa-

tion. To demonstrate the method, he used bicubic tensor product B-spline patches

as examples of free-form surfaces. To reduce computational effort, the B-spline func-

tions were formulated as third order polynomials instead of using recursive evaluation

[de Boor 7S](see equations 3.6 and 3.7 in Section 3.2.1). A second class of surfaces

considered were analytically defined quadric surfaces defined in parametric form in

terms of transcendental functions. For example, an hyperboloid of one sheet with an

implicit definition of

F{x,y,z) = - +
1L.- Z--\=0 (3.1)

T i v i r i
x y 2

is represented parametrically in standard orientation (i.e.. at the origin with principal

axes aligned with the local coordinate system associated with the surface), by

x — x(u,v) — rx cos(u) cosh(u)

y = y(u.v) = r
y
sin(u) cosh(u)

z = z(u,v) = r, sinh(y) (3.2)
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with < u < 2tt and — ir < v < ir. At this point it is worth mentioning the differences

between implicit and parametric representation. Implicit surfaces represented by a

function of the form

f{x,y,z) = Q (3.3)

are popular for quadric surfaces. Implicit surfaces have a closed form mathematical

representation, and as such operations like intersections and surface interrogation can

be performed exactly. On the other hand, surface point evaluation usually requires

solution of nonlinear equations. Furthermore, it is difficult for the designer to find

a relationship between the algebraic coefficients which define the surface in implicit

form and the surface's geometric properties. [WoodwarkST] notes that high degree

implicit equations produce surfaces with unpredictable behavior, self-intersections,

numerical instability, and other related problems. Methods to counteract these prob-

lems in the representation of free-form curves and surfaces by implicit, piecewise

algebraic functions, defined in terms of triple product B-splines. can be found in

[Patrikalakis SSd]. For polynomial (algebraic) surfaces represented in implicit form.

[Hoffmann 87c] shows implicit polynomial blending surface constructions are possible

using potential methods.

Parametric surface representation is of the form

S(u, v) = [x(u, v), y(u, y), z(u, v)} (3.4)

where x, y, and z are the three Cartesian coordinates of a point on the surface. Points

on parametric curves and surfaces can be easily computed. Parametric representa-

tions lend themselves to efficient computations for graphic display and for numerical

control purposes in NC machining [Faux 79]. The use of vector quantities in para-

metric equations aids in matrix transformations such as translations and rotations.

It also allows direct control of the surface. In the case of blending surface creation,

parametric surface representations are usually approximations only. The approxi-
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mation is controlled by tolerances. Parametric polynomials can represent free-form

curves and surfaces easily. Since many primary surfaces will be free-form parametric,

a parametric surface is also a natural choice for the blend. For generality, parametric

surfaces were selected for the underlying surface and blend representation.

Non-uniform rational B-spline (NURBS) surface representation was chosen for the

underlying primary surfaces. The form was chosen because it provides a complete.

unambiguous mathematical representation able to represent complex sculptured sur-

faces as well as the classical algebraic surfaces such as quadrics. tori, and surfaces

of revolution with rational polynomial profiles. Conic sections and quadric surfaces

can be represented exactly with rational B-splines while retaining the properties of

integral polynomial B-splines [Tiller S3]. Finally, there exist complete standard data

formats for NURBS surface representations [Smith S8] which provide for the direct

exchange of geometrical information between different geometric modelling systems,

and design and manufacturing systems.

A brief review of polynomial and rational B-spline theory necessary for this work

follows. See also [Alourdas 89], [Patrikalakis 89a] and [Tuohy 91b].

3.2.1 Polynomial B-Spline Curves and Surfaces

A spatial, integral B-spline curve has the form

RmW = E P«^.m(0 (3.5)

t=0

with P the control polygon of n vertices P,-, < i < n — 1, and a knot vector

T = {t , ti, .

.

. , t k ), a set of real numbers such that t, < t t+x , < i < k. The -V,..\/(0

are scalar valued piecewise polynomials in the parameter t. and are the basis B-spline

functions evaluated recursively with the Cox-de Boor algorithm [de Boor 72] [Cox 72]:
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1 if t {
< t < t t+l

(3.7)

otherwise

The convention 0/0 = is also assumed. Equation (3.5) represents a piecewise. con-

tinuous polynomial of degree M — 1. order M. The curve is continuously differentiable

up to order M — 2. If a curve of order M has no multiple interior knots it is M — 2

differentiable. If there are multiple interior knots the continuity order at such knots

may be reduced.

The basis functions possess the following properties:

-Vt,.\/U)>0 . 0<i<n-l (3.S)

n-1

E#,\at(0 = 1 • t <t<t k (3.9)

Equations (3.8) and (3.9) form the basis for the convex hull property. Each interval

[£,-, tl+ i] of the curve is enclosed within the convex hull of the consecutive M vertices

affecting the interval. The entire curve is contained within the convex hull of the

defining polygon vertices.

The B-spline approximation to a vector- valued, continuous function g(t) in the

interval [t , tk] is given by

t=0

The £j are the nodes of the B-spline basis over the knot vector T and are given by

1

'' " M - 1
'*i+1 + U+7 + • • + U+M-i), 0<i<n-l (3.11)

The parametric derivatives of a B-spline curve defined by (3.5) are [de Boor IS]

^ m
(

.v _ u "f
ZLlfizL^.,,0 (3.12;
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f^l =
(
.U-l)(A/->)"£

P'- P '-' - P-- P '-'

NtM - 2 (t) (3.13;
U+M-2 — t

For the same B-spline curve, there exist an infinite number of defining polygons

with more than the minimum number of vertices. The process of finding an al-

ternative representation by the addition of new knots to the knot vector is called

knot refinement or subdivision . Consider a B-spline curve of order M with n control

polygon vertices, as given by (3.5). The objective is to define the same curve exactly

with a new knot vector.

5 = (So, 5i, . . . , Sm+ \f_i )

obtained from the original knot vector

T — (to, *i, . .
. , in+M-i)

by the addition of p new knots, (p ,
.... pp_ l ) such that rn = n -f p. The new curve is

given by
m-\

SM (t) = Y, CjBjM*) (3.14)

where the control polygon vertices C
;

are such that RmU) = Sm(0- -^ general

method for knot refinement applicable to any B-spline curve is the Oslo algorithm

[Cohen 80]. By the algorithm, the new vertices C
;
are

^ t < i < n - 1

C
; = X>tp

.

" " (3.15)

i=o o < j < m — 1

The coefficients ak

XJ
are given by the recursion relation

1 if U < Sj < ti+ i<3
=

{

-
:
- w

(3.i6)

otherwise
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Sj+k-1 — U k-\ ,
b+k — si+k-l k-l

i

U+k-l — U ' U+ k — ti+l
Ct; : =

An application of subdivision is the splitting of a B-spline curve at some arbitrary

point. A new knot can be added at a point with multiplicity M, and the curve can

be considered to consist of two B-spline curves which, taken together, represent the

original curve.

A tensor product B-spline surface is a vector-valued function of two parameters,

say u. v. The control polyhedron is now topologically a rectangular net of vertices

P, j, < i < m — 1, < j < n — 1. The two knot vectors

T = (Wi,-.-,Wm-i) (3-1S)

S = (s , Si, Sn+;v_i) (3.19)

are associated with the parameters u, v. The integral B-spline surface formulation of

order M in the u direction, N in the v direction, is given by

m— 1 n—

1

Pm,a^,^) = E E Pm£,-,m(u)£;VvH (3.20)

t=0 j=0

By application of equations (3.12) and (3.13) the parametric derivatives of the B-spline

surface patch with knot vectors (3. IS), (3.19) are

m-\ n—\ p _ p
PW"-") = (^-1)EE- ^B^MBwv-iM (3.21)

i=0 ;= 1 •
S
J+N-1 — 5j

m-ln-1 Tp p p _ p
Pmjv(^) = (iV-l)(,V-2)EE

I= ; = 2

1

sj+N-2 — Sj

m— 1 n—

1

.
5
j + jV-1 — Sj Sj+jv_2 ~~ sj-l

5ilAf(u)5iliV-2'(t;) (3.22;

m— i n— 1 p _ p
PW«.") = (^-DEE-r 4^-,m-i(u)^,;v(<;) (3.23)

j=l ;=Q H+M-l — H
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m— 1 n— 1

P'kA^v) = (M-l)(M-2)£ E
Pj'.j — Pi-l.j Pt'-l.j — P*-2,j

BitM.2(u)BjtN (v) (3.24'

PM,JvK U
) = P *V/,,V

=
m— 1 n— 1

(M - l)(N - D E E Pm - p '.;-i - pi-u + Pf-iJ
i=l ; = 1

BizM-i{u)Bj,N-i{v)
(3.25)

(tt'+Af-l — ^Hya+AT-l — 5 ji)

The primes signify differentiation with respect to u, and the dot with respect to v.

3.2.2 Rational B-Spline Curves and Surfaces

Rational B-spline curves and surfaces make use of homogeneous coordinates. For

example, if a point P = (x,y,z) is defined in 3-dimensional Euclidean space, the

corresponding homogeneous coordinate is P* = (wx,wy,wz.w), where w is the ho-

mogeneous coordinate. We assume w > 0. The polynomial formulation of the rational

B-spline curve in homogeneous space is

Rk(0 = E P?£U(0 (3.26)

i=0

The rational B-spline curve is the projection of the curve defined in (3.26) into

3-dimensional Euclidean space

Notice that by taking w
1
= 1 and using (3.9), (3.27) reduces to an integral B-spline

curve.
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The generalization to the rational B-spline surface follows:

Q ,
,

ll^iZTJo
1 wiJP i ,j

B
i .M(u)B

JMv) ,, 9Q .

The homogeneous coordinates iytj are again taken to be positive. As with (3.27). if

Wij = 1 the integral B-spline surface patch equation is recovered.

[Tiller 83] notes that the properties of integral (polynomial) B-spline curves and

surfaces are easilv extended to the rational formulation.

3.3 Linkage Curves

The boundary of the blending surface on the underlying surfaces is the linkage curve

or trim line. The term linkage curve was introduced by [Hansmann 87] and will be

used in this thesis. There are many ways to specify the linkage curve but most are

variations of the following:

• interactively selecting points on the underlying surface (typically by specifying

them in parameter space and then mapping them to 3-dimensional space), and

then fitting a curve through these points in the parameter space of the surface

[Hansmann 87]. This method does not require that the surfaces intersect.

• specifying points on the underlying surface to simulate rolling ball or spher-

ical blends and fitting the points with a space curve [Varady 89][Pegna 88]

[Pegna90].

• specifying an offset curve from the intersection of two surfaces, either along

geodesic paths on the surface or along isoparameter lines at a constant distance

[Patrikalakis 89b] [Bardis 89], or as a function of the parameter of the inter-

section curve [Sabol 83]. (The geodesic path is locally the path of minimum

distance between two points on a surface among all paths lying on the surface
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between these points [do Carmo 76]). While the methods are limited by requir-

ing the surfaces to intersect, the blending of non-intersecting surfaces does not

often occur in engineering problems.

Linkage curves which are not isoparameter lines will generally be of high degree .

Depending on the method used to define the curves, the linkage curves will be either

high degree B-splines, procedural curves, or curves defined in the parameter space

of the underlying surfaces. No matter what method is used to specify the linkage

curve, care must be taken to ensure the curve does, in fact, lie on the surface with

sufficiently high accuracy.

The linkage curves must be properly parameterized. When constructing the cross-

link curves it is necessary to establish some type of correspondence between the linkage

curves. The usual method for establishing this is by a correspondence of equal param-

eter values. If the linkage curves are not carefully parameterized, however, there is

a possibility that this algebraic isoparametric correspondence will link inappropriate

points causing undesirable twist and intersections [Koparkar 91] [Pegna 89]. Inter-

estingly, [Koparkar 91] suggests that the parameterization of the underlying surfaces

and the linkage curves is unimportant. A suitable blend requires the proper spatial

relationship between the curves and the underlying surfaces. To ensure proper corre-

spondence, he uses Euclidean projections from the intersection curve of the normal or

fanout surfaces onto the underlying surfaces to establish a geometric correspondence

between the linkage curves.

3.4 Directional Curves

Most of the blending surface design methods construct the blend surface with a family

of cross-link curves. The cross- link curves usually connect the linkage curves through

a specified correspondence scheme and are typically designed as planar curves. The

use of a directional curve is one method of defining the orientation of this planar
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curve. The directional curve may be defined as:

• the intersection curve of the surfaces to be joined,

• the intersection of offset surfaces or fanout surfaces of the underlying surfaces.

• a free-form space curve specified by the designer to achieve the desired effect

both at the boundary and interior to the blending surface.

• the orthogonal projection of one linkage curve onto the other surface.

The usual means of using the directional curve is through an algebraic corre-

spondence of parameters between the linkage curves and the directional curve. The

technique essentially determines the direction of tangent vectors to the surface at the

linkage point. Alternative techniques are to use orthogonal projections of the direc-

tional curve (in this case the directrix) onto the underlying surface, or to establish

a geometric correspondence between a Euclidean projection of the directional curve

onto the surface.

An alternative to a directional curve is to define a function which determines the

direction of the tangent vectors at the linkage point. [Hansmann 87] requires the

cross-link curves to be orthogonal to the linkage curve. In an automatic marine pro-

peller fillet example demonstrated in Chapter 5. the cross-link curves are constructed

in ''fillet planes/' Each fillet plane contains a vector normal to the propeller blade

surface at the intersection of the blade and hub, and a point on an isoparameter

curve extending along the blade surface from the hub to the tip (see Section B.2). No

directional curve is required.

3.5 Boundary Conditions

Boundary conditions specify the degree of continuity between the blend surface and

the underlying surface along the linkage curve. The simplest type of boundary con-

dition is position continuity. This simply ensures the edge of the blend surface does
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in fact lie on the underlying surface along the linkage curve, to within the specified

tolerance. No further conditions are required of the blend.

3.5.1 Tangent Plane Continuity

Most blending algorithms require, beyond positional, tangent plane continuity across

the linkage curve. [Pegna 89a] refers to this as the first order blending problem. To

satisfy tangent plane continuity, the tangent planes to the blend and the underlying

surface must match at all points along the linkage curve. This condition is satisfied

during construction of the cross-link curves. It may be automatic such as in the case

of circular or spherical sweeps, where the generatrix contacts the surface at a point

of tangency. More general methods determine the tangent plane to the underlying

surface at a point on the linkage curve, and construct the cross-link curve by initiating

the linkage curve in the tangent plane in the direction specified by the directional

curve. A bias factor can be applied to control the effect of the tangency condition

into the interior of the blend.

3.5.2 Curvature Continuity

Curvature continuity, or second order blending, is achieved when normal curvatures

agree in every direction at every point along the linkage curve. Before proceeding

with the requirements for curvature continuity, a review of some differential geometry

concepts is presented.

3.5.2.1 Review of Differential Geometry and Curvature

We take the curve u = \i(t) on a parametric surface r = r(u,v) where

r = r(w. v) —
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represents one of the underlying surfaces in the blending problem, and

u = u(*) =
u(t)

v(t)

3.30)

the linkage curve on that surface. A specific point on the linkage curve in three

dimensions will be referred to as r{t).

The unit vector normal to the surface is given by

n =
r u A r v ;

|r u A rJ
3.31

where A denotes the vector product. A unit tangent vector to the linkage curve, r'.

is given by [Faux 79]

r' = ru it + rvv — Aii (3.32)

where

A =

*** u ^ V

Recalling that the arc length of a parametric curve is

s{t) = / \r'\dt.
J t

the squared arc element is

•3.33

3.34

2.-.2N i,2
ds' = |rT = (r;u

2 + 2r u • rv ii v + r
2
v
v
2
) dt 3.35

or. more simply,

ds
z = {Eii

1 + 2Fuv + Gv 2
)dt

2\ j^2
3.36
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where

E - E(u, v) = ru • r u (3.37)

F = F{u,v) = ru -r„ (3.3S)

G = G(u.v) = rv -rv (3.39)

are the elements of the first fundamental form . This is also referred to as the first

fundamental matrix or the metric tensor. It is a measure of the distance in three

dimensional space that exists between neighboring points on a surface.

The curvature of a curve parameterized by arc length is

k = k{s) = |r"|, (3.40)

and in terms of the general parameter t,

|r'Ar"|

The radius of curvature is

P=-. (3.42)
K

Using (3.32) for the curve u(t) = [u(t), v(t)} on the surface r = r(w, v), we obtain

r" = ruu ii
2 + 2ruvuv + rvv v

2 + r u ii + rvv (3.43)

Taking the component of (3.43) in the direction of the surface normal n.

r" n = n • ruu u
2 + 2n ruvuv + n • vvv b

2 + n ruu + n • rvv (3.44)
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and recalling that n • ru = n • r„ = 0, we find the second fundamental form or tensor

b = Lu2 +2Muv + Nv 2
(3.45)

where

L = L{u,v) - n • ruu (3.46)

M = M{u,v) = n-ruu (3.47)

N = N(u,v) = n-rw (3.4S)

The second fundamental tensor provides a measure of the curvature of a surface at

a point. It can be shown that the normal curvature n n of the surface at a point r(t)

along the linkage curve in a given tangent direction it, v is simply the ratio of the

second fundamental form to the first fundamental form.

Lit
2 + 2\luv+ Nv 2

Kn ~
Eifi + ZFiiv + Gv*

]

A normal section is the plane containing both a unit vector t = [u, v] emanating from

a point r(t) in the tangent plane, and the normal vector to the surface at that point.

Equation (3.49) therefore gives the normal curvature for any normal section at a

point r(t). [Faux 79] presents the notion of signed curvature for planar curves and for

surfaces. For planar curves, the sign of curvature is chosen as required for the applica-

tion. For surfaces, the curvature is assumed to be positive if the curve of intersection

of the normal section with the surface has its center of curvature in the direction of

the positive surface normal vector. The principal curvatures are the maximum and

minimum values of (3.49). and are denoted «!,«2 . The product K = k
x
k 2 is the

Gaussian curvature, and the mean curvature is H = \{k>\ + «2 ). The directions cor-

responding to the principal curvatures are called the principal curvature directions .

A line of principal curvature of the surface is a curve on the surface such that, at
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all points r(t) along the curve, the tangent line of the curve is a principal direc-

tion. It can be shown that the lines of principal curvature are orthogonal [Farin 88]

[do Carmo 76].

An asymptotic direction of the surface r(u,v) at a point r(i) is a direction in the

tangent plane for which the normal curvature is zero. A geometric interpretation of

asymptotic direction is the equation of a conic section known as Dupin's Indicatrix.

Knowing the principal curvatures, the normal curvature K n of the section formed by

the unit tangent vector t and the surface normal vector is

K n = «i cos
2
9 -f k 2 sin

2
9 (3.50)

where 9 is the angle between the unit tangent vector t and the direction of the

maximum principal curvature. Equation (3.50) is the classical Euler's Formula , ex-

pressed in terms of the orthonormal basis formed by the principal curvature direc-

tions. Dupin's Indicatrix is the union of conic sections in the tangent plane such that

Kn — ±1. When K\ and k 2 have the same sign at r(2), the Gaussian curvature is pos-

itive. r(t) is an elliptic point, and Dupin's Indicatrix is the graph of an ellipse. If K\

and k2 have opposite signs, the point is hyperbolic, and Dupin's Indicatrix gives two

hyperbolas with a common set of asymptotic lines. If one of the principal curvatures

is zero, the asymptotic lines are parallel straight lines and the point is parabolic.

For an extensive treatment of these concepts refer to [do Carmo 76] and [Farin 88].

3.5.2.2 Conditions for Curvature Continuity

With these concepts in mind, we now consider the problem of curvature continuity of

adjoining surfaces. Pegna and Wolter [Pegna 89a] present the following formulations

for curvature continuity:

The osculating paraboloids of the underlying surface and the blending surface

must match at all points along the linkage curve. The osculating paraboloid for

a surface S with the xy plane as the tangent plane at a point p on S is given by
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[do Carmo 76]:

2 = ^(^/xx + -xyfxy + y
2

fyy) (3.51)

where 2 = /(x, y) is the equation of the surface.

If the blend juncture is already shown to be tangent plane continuous, the following

criteria may be used:

1. The Dupin's indicatrices and curvature signs of both surfaces must agree along

the linkage curve.

2. The asymptotic directions of the two surfaces agree at all points along the

linkage curve.

3. The second fundamental tensors, formed as basis independent, multilinear maps.

agree at all points along the linkage curve.

4. The principal curvature directions and principal radii of curvature for the sur-

faces agree along the linkage curve.

Finally, as noted in Chapter 2, [Pegna 89a] shows that two surfaces which are

tangent along a first order smooth linkage curve are curvature continuous if their nor-

mal curvature agrees in a direction other than the tangent to the linkage curve for all

points along the linkage curve. This formulation is called the Linkage Curve Theorem.

Since it is important to our work, this theorem is stated formally from [Pegna 89a]:

Theorem 3.1 Given two C 2 -continuous surfaces S\ and S 2 , and a C 1 -continuous

linkage curve E(t) such that E' ^ for all t, t 6 1 with T C ft. where ft is the set of

real numbers. The linkage curve represents the tangent plane continuous intersection

of the two surfaces. If at some point E(t ) G E(T) for some tangent direction X

linearly independent from the tangent direction E'(i ) the normal curvatures of S x

and S 2 agree, then the normal curvatures ofS x
and S 2 agree for all tangent directions

at the point E(£ )-
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Chapter 4

Blending Surface Generation

4.1 Introduction

The method for blending surface generation implemented in this thesis approximates

a smooth transitional surface as a B-spline surface with user-specified boundary con-

ditions across the linkage curves. The general method is as follows:

1. Approximate the linkage curves with integral cubic B-spline curves. The knot

vectors of the approximated linkage curves are then merged to form a basis for

the design of the cross-link curves.

2. Construct the family of cross-link curves based on the type of blending surface

desired and the specified boundary conditions, linkage and directional curves,

and bias functions. The parameter values of the cross-link curves are the nodes

of the merged knot vector of the linkage curves.

3. Create the approximating blending surface by lofting the cross-link curves over

the merged knot vector of the approximating linkage curves. [Tuohy 91b] shows

that by using the merged knot vector and the nodes of the linkage curves, the

boundary curves of the blend will be identical to the curves approximating the

linkage curves.
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4. Evaluate the approximation by checking continuity errors with adaptive sam-

pling of the blending surface and underlying surfaces. The degree of sampling

is dependent on the blend continuity specified across the linkage curves.

5. Improve the approximation by the addition of cross-link curves based on the

adaptive sampling results until the error is within the specified tolerances.

4.2 Linkage Curve Approximation

The linkage curve defines the extent of the blend on the underlying surfaces. It

can be expressed as a B-spline curve, a curve defined in the parameter space of the

underlying surface, or as a procedural curve. No matter how the linkage curve is

specified, it must in fact lie on the surface to ensure the blending surface joins the

underlying surfaces with proper position continuity. We use a method presented by

[Wolter 91] and [Tuohy 91b] to approximate the linkage curve with a cubic integral B-

spline curve to within position, tangent angle and relative curvature tolerances when

compared with the original linkage curve. We assume the linkage curve is expressed

as a vector- valued function, g(t), and seek an approximating integral B-spline curve

as in equation (3.5),

Rm(0 = E pA,a/(0 (4.1)

j=0

which interpolates the function g(t) at the nodes £, of the knot vector

r = (to,*l,...,tm+M-l), (4-2)

normalized such that the overall parameter interval spans [0. 1], Selecting the nodes

as in (3.11).

6 = 37^7^+1 + *.-+2 + • • • + tt+M-l), (
4 -3

)
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the vertices P
t
of the control polygon of the approximating B-spline may be computed

by solving the system

£ VjNjMti) = S(6)> < i < n - 1, (4.4)

which can be written in matrix form as

[N]{F] = {g} (4.5)

where

M = [*OK«»-I.0<i<»-1 (4 - 6)

M = MjMZi) (
4 - 7 )

{P} = [Po,....P n -i]
T

(4.8)

{g} = [go,...,gn-i]
T

(4-9)

[de Boor 78] shows that the matrix [N] is non-singular and therefore invertible since

we evaluate the system at the nodes of a monotonically increasing knot vector. The

system of (4.5) can thus be solved for the control polygon using standard linear algebra

techniques.

The initial approximation is then improved by adaptive sampling. The method is

explained here because an adaptation of the method is used to improve the blending

surface. The approximation is tested at midspan between the nodes for position error

using local error bounds. The approximation method ensures the position error at

the nodes is zero. [Wolter 91] and [Tuohy 91b] show that the maximum position error

occurs near the midspan between two adjacent nodes. The error function, therefore.

is simply

IR-mU,) - g(*,)| < d, rji =
*

for < i < n - 2. (4.10)
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If the position test is satisfied, the angle o is formed by the tangent vector to the

approximating B-spline and the tangent to the linkage curve.

arccos
iRA,K)iig'K;

< e 2 , m = m +
J

i+1
for 1 < i < n - 3. (4.11

where 77
,- is defined as in (4.10). In practice, it is usually convenient to test the angle

difference at the nodes as u
z
~ & as the distance between successive knots decreases

during adaptive sampling.

In similar fashion, relative curvature at the nodes of the approximating curve

Ir'Ar"!

,/|3

is tested such that

Kg(&) - «r(&)
< e.3- (4.12;

«g(&)

For both first and second order tests, the use of geometric properties such as angle

or curvature of the approximation and original curve is preferred [Tuohy 91b] since

such properties are independent of the curve parameterization. At points where the

error test fails. t
t

is added to the knot vector T. With this enriched knot vector, a

new approximating B-spline curve is constructed. The procedure is repeated until

the approximating curve passes all error tests.

From the above discussion, it is noted that improvement of the approximation

is restricted solely to knot vector refinement. The shape of any B-spline curve is

derived from its control points and the basis functions. The knot vector has a sig-

nificant influence on the basis functions [Rogers 76] for a given curve order. Since

the approximation scheme interpolates the linkage curve at the nodes exactly, knot

vector refinement offers the best means of improving the approximation without loos-

ing position accuracy. Furthermore, prudent selection of the initial knot vector will

enhance the efficiency of the approximation. Several methods for selection of initial

knot vector are available [Hartley SO] [Hoelzle 83] [Hoschek 87].
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4.3 Construction of Cross-Link Curves

Two techniques were examined for the construction of cross-link curves. The first

algorithm is a general one which creates a family of cross-link curves derived from

the linkage curves, the boundary conditions across the linkage curves, a directional

curve, and a bias function. The second algorithm is actually a special case of the

first, where the linkage curves and cross-link curves are constructed automatically

to satisfy specified geometric conditions. The second algorithm is presented as an

example in Chapter 5.

The cross-link curves are integral B-spline curves of the form

C(«) = Y, PiNiM (t), (4.13)

where M is the order and m the number of vertices of the control polygon. P. The

cross-link curves are constructed at the nodes of the common knot vector created by

merging the knot vectors of the approximations to the linkage curves. As noted at the

beginning of this Chapter, this procedure ensures the boundary curves of the lofted

blending surface are identical to the approximating linkage curves. The boundary

conditions are used to determine the order of the cross-link curve, the number of

control points, and the knot vector. Nine combinations of position, tangent plane

and curvature continuity are possible.

The simplest case is position continuity on both underlying surfaces. The cross-

link curves are of second order and have two control points with a knot vector of

(0.0. 1. 1). The control points are simply the points on the linkage curves associated

with the particular node of the common knot vector being evaluated. This type of

cross-link curve is useful as a preliminary check of the linkage curve correspondence.

The next two cases require position continuity on one surface, and position and

tangent plane continuity on the other surface. A third order B-spline curve with three
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control points.

1=0

is used with the knot vector (0.0,0.1, 1,1). These curves are all of Bezier form, a

special case of B-spline, and can be raised to cubic B-splines easily [Cohen 85].

The remaining combinations use integral cubic B-splines (M = 4). One case

requires position and tangent plane continuity on both surfaces. Two other cases

require position continuity on one surface, and position, tangent plane and curvature

continuity on the other. The cross-link curve for these cases is of the form

3

C(0 = lP^, 4 (i). (4.15)

with knot vector (0,0,0,0,1,1.1,1), and is again of Bezier form. The three cases

differ from one another only in the manner in which the control points are computed.

Two cases require up to tangent plane continuity on one surface, and up to cur-

vature continuity on the other surface. For these cases a fifth control point is added.

C(0=E P,AU0, (4-16)

t=0

with knot vector (0,0,0,0, J, 1, 1, 1, 1) or (0,0,0,0, §, 1,1, 1,1). For convenience the

cross-link curve C(t) is parameterized such that C(0) interpolates surface Si with

linkage curve E T (i), and C(l) interpolates the second surface S 2 with linkage curve

E2 (£). The knot vector is chosen such that the internal knot is closest to the surface

with the curvature continuity boundary condition.

The final case requires up to curvature continuity conditions with both underlying

surfaces. The cross- link curves now take the form

C(i) = ]TP;J\U0, (4.17)

i=0

with six control points and knot vector (0,0,0,0,
J, §, 1. 1.1. 1). Having selected the
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proper form of the cross-link curve required to satisfy the boundary conditions, the

curves are constructed.

4.3.1 Position Continuity

Position continuity is guaranteed to a specified tolerance by evaluating the linkage

curves at the nodal points of the common knot vector. We label these points on the

linkage curves E
; (£,), j = 1,2, corresponding to surfaces S

;
. A common knot vector

T . derived from the approximation of the linkage curves, is evaluated at the nodes £,,

as defined in (3.11). The cross-link curve associated with the node £, has the form

m-\

C(t) = £ PiNiM (t) (4.18)

:=0

To satisfy position continuity, then, we require that

Po = EM) (4.19)

Pm-i - E2(&) (4.20)

4.3.2 Tangent Plane Continuity

Tangent plane continuity for each cross-link curve requires two control points asso-

ciated with each boundary. The first establishes position continuity. The second

control point is located in the plane tangent to the primary surface so that the cross-

link curve is tangent to the surface at the linkage curve. The position of the second

control point in the tangent plane is determined by the directional curve and a scalar

bias function. This function is used to control the magnitude of the tangent vector

of the cross-link curve and thus influence its shape.

The direction of the vector in the tangent plane of the primary surface at E
; (£)

is based on a technique developed by [Tuohy 91b]. The method is illustrated in

Figure 4.1. The direction t
;

lies along the intersection of the plane tangent to the
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Figure 4.1: Tangent plane construction

primary surface at E
; (£ t ), j = 1,2, with a plane containing corresponding points on

both linkage curves and the directional curve. The direction is found by computing

the cross product of the normal vectors to the two planes.

We first compute the unit normal vector to the plane formed by the points E!E 2D,

where Ei and E2 are corresponding points on the linkage curves and D is the associ-

ated point on the directional curve. The unit normal vector is computed as

n =
(E 2 -E 1)A(D-E 1 )

|(E2 -E 1)A(D-E1 )|

(4.21)

The unit normal vector rij to the underlying surface S
: ,j

= 1,2 is computed as

n =
S u A S„

IS,,. AS,, I

(4.22)

In the event one of the parametric derivatives of the surface is zero, (i.e.. a degenerate
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patch), the unit normal vector to the surface is found by either

nj =
]a

lv
'\ ifS u = 0, or (4.23)

^Ul , A S v

IS

s

r
A S„|

A S uv
Uj =

,

"' I
,

if S w = (4.24)

I
^u A o u„

I

as suggested by [Faux 79].

The control points of the cross-link curve required to establish tangent plane

continuity at its end point on the linkage curve Ei(£) are, therefore,

Po = Exte) (4.25)

Pi = P ±t, (4.26)

where ti = g^noAni) (4.27)

where q\ is a positive bias factor which can depend on £,-. The control points for the

other end of the cross-link curve associated, with E2, are

Pm-i = E2 (fc) (4.28)

Pm _ 2 = Pm _ 1 ±t 2 (4.29)

where t 2 = g2 (n An 2 )
(4.30)

where q2 is also a positive bias factor which can depend on £,, and be defined inde-

pendently from q\. The ± in equations (4.26) and (4.29) provide a way to ensure the

tangent vectors are oriented in the proper direction. Depending upon the order in

which the cross products are taken and the direction of the surface normal vector, the

tangent vector will point either towards the directional curve or away from it while

still lying along the intersection of the tangent and surface normal planes (Figure 4.2).

Without a directional check, cross- link curves and blending surfaces may arise such as

shown in Figure 4.3. To account for this we compute the angle between the tangent
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Figure 4.2: Possible directions of t
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Figure 4.3: Blend with wrong tangent direction

vector t
;
and the vector D — E

7 ,

0\ = arccos
tj-fP-E,)
|t;||D-E,|'

;4.31)

and the angle between the opposite tangent vector. —tj, and D — E
;

.

#2 = arccos
-tj • (D-Ej

|t
7
||D-E

7 |

4.32)

If a>2 < (t>\i the tangent vector —tj is selected, thus determining the sign in equa-

tions (4.26) and (4.29) and ensuring the correct tangent vector is chosen. The benefit

of this technique is that the choice of proper tangent direction is automatic and the

tangent is guaranteed to point towards the directional curve. Thus, if a blending

surface such as that shown in Figure 4.3 is desired, all that is required is that the

directional curve be located to select that tangent orientation.

The factor q}
in equations (4.27) and (4.30) represent the scalar bias functions.
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The bias function controls the shape of the cross-link curve by controlling the mag-

nitude of the tangent vector. It can be a constant value or a function qj{t) which

varies with the parameterization of the linkage curves or directional curve. Examples

of constant and variable bias functions are given in Section 5.2.

The method presented above (equations (4.25) to (4.30)) allow the definition of

planar cross-link curves, each of which is in a plane E1E2D controlled by the paramet-

ric correspondence of the linkage and directional curves. This method is at variance

with the method developed by [Hansmann 87], who chooses vectors t
t and t 2 to be

orthogonal to the linkage curves (as well as to rii and 112) and does not, therefore,

have planar cross-link curves even for up to tangent plane continuous blends. Our

experimentation indicates that the construction of planar cross-link curves with tan-

gent vectors at the ends not exclusively controlled by the linkage curves but rather

from the directional curve provides easy control of the shape of the blend and good

flexibility in the design of complex free-form blends.

4.3.3 Curvature Continuity

To satisfy curvature continuity boundary conditions, we rely on differential geometry

properties of the underlying surfaces along the linkage curves (see Section 3.5.2.1).

The cross-link curve is of the form given by equation (4.13). Evaluating this

equation and the first and second parametric derivatives given in equations (3.12)

and (3.13), we get the following system of equations along Ei(i):

Po = EiK,-) (4.33)

Pl = Po + q
t

(0)(^i) (4.34)

M- 1

C^ (0)
{ (A/-l)(A/-2) J

(4 - 35)
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For control points associated with the second surface and E2(i),

Pm-i = E 2 (6) (4.36)

tm+M-2 ~ tm-1

M - 1

tm+M-2 ~f ^m+Af-3 ~~ tm-l ~ *m-2

Pm _ 2 = P^x-C^l)! m+JVf

2

A

m- 1

)
(4.37

Pm_3 = Pm_i-Cj.(l)(- M- 1

C
«' (1)

( (;V/-l)(M-2) J

(4 ' 38)

As before, E
; (£,), j = 1,2 represent the linkage curves evaluated at the nodes

<f,
of

the common knot vector. 5, of the approximations to the linkage curves, and C is

the corresponding cross-link curve and its parametric derivatives. The subscript £

denotes association with a particular node. The knot vector for the cross-link curve is

T = (t , ti, .

.

. , £m+M-i) as specified in Section 4.2 above. The control points P ,Pi

and Pm_i,Pm _2 are found using the method shown in Section 4.3.2 to satisfy position

and tangent plane continuity. From equations (4.33), (4.34), (4.36) and (4.37). we

can therefore solve for C^(0) and C£ (1):

C'JO) = (Pi-Po)-^! (4.39)
*m — f

i

CJ.(1) - (Pm.,-Pm_ 2)-
¥—±- (4.40)

*m+M— 2
— t-m-l

To find the remaining control points P 2 and Pm _3, we need information concern-

ing second derivative of the cross-link curve at its end point. We find this using a

generalization of the method presented by [Hansmann 87]. Specifically, we obtain the

second derivative of the cross-link curve, evaluated at the end points E
; (£i), from the

curvature of the normal section of the underlying surface which contains the cross-link

curve tangent vector and the surface normal vector at E
; (£,•).

We first find the curvature of the normal section curve using equation (3.49)

Lu 2 + 2Muv + Nv 2
.....

K n[C,i) = TT-: 4.41^' Eii 2 + 2Fiiv + Gv 2
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where £\ F, G, Z,, M, N are the coefficients of the first and second fundamental forms

defined in equations (3.37) through (3.39), and (3.46) through (3.48), and (u,v) the

direction of the normal section curve in the parameter space of the primary surface.

The dot signifies differentiation with respect to the parameter t of the curve on the

surface formed by the intersection of the normal section plane and the underlying

surface. The underlying surface, of the form

m— 1 n— 1

i=0 j=0

;4.42)

is evaluated for position, first, second and cross-derivatives recursively using the Cox-

de Boor algorithm and equations (3.21) through (3.25). The results are used to solve

for the first and second fundamental coefficients.

To find the required tangent direction (u,i>) of the normal section in terms of

the surface parameters we recall from differential geometry (Figure 4.4 and equa-

tion (3.32)) that a nonzero vector t is tangent to the surface S at the point E(£, ) if

there is a regular curve r = r(t) on the surface through E(£,) such that t = r. If

r = r(t) = r(u(i), v(t)), then the tangent vector to the surface is

t = r u • u + rv • v 4.43

The vectors ru and r„ are the first parametric derivatives of the surface at E(£,)

and are known. We also know t from the solution to the tangent plane continuity

problem in Section 4.3.2. Denoting the components of the vectors as t = [tx ,tY Jz),

r u = (^,^,-u) and r„ = (x v ,y v ,zv )
in the global coordinate system, equation (4.43)

can be written in matrix form as

'4.44'

> -

t.x r X y

ty !/u Vv

tz
J

-u ~v
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Figure 4.4: Tangent vector in terms of surface parameters

This is a linear system of the form Ax = b. We solve for [it v]
T using a least squares

technique [NAG 89] by taking

t = C£.(0) (4.45)

and

t = C'6 (l). (4.46)

We then evaluate (4.41) to obtain the normal curvature /c n (6') OI" the primary surfaces

along the normal section formed by [u,v\.

Having obtained the normal curvature of the primary surfaces at the points Ej(&)

and directions tj, (j = 1,2), we now proceed to construct cross-link curves which

have the same curvature at these points and which are also locally normal sections of

the blending surface to be generated. Because the tangent plane continuity is already

enforced, the relevant normal section planes of the blend at Ej and E 2 are defined by

(ti,rii) and (t 2 ,ri2), respectively.

To relate the normal curvature to second derivative of the cross-link curves at their

end points, we consider a local orthogonal coordinate system with the origin at E
J (<f,),

the x-axis parallel to the direction of the tangent vector tj, the y-axis parallel to the

primary surface normal vector n
; , and the z-axis defined by t

;
A rij. We now compute
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the components of the cross-link curve second derivatives at their end points in these

two local coordinate systems. We use equation (3.41) for r = C^
t
(t) — [xi(t),yi{t),0]

for t near or 1. In this way. we obtain the relation

\ i n i u\ I /-i/ f _\ |3 / < < - \

\x
l y l

- y l
x

l \

= K n \C it
{r)\ (4.4 r

)

for r = or 1. Using equations (4.45) and (4.46) and decomposing t along the local

axes so that t = [tx ,ty ,tz ]
where tz = and |t| = {t

2

x -f ^)
1/2

. then equation (4.47)

becomes

\txy" - t
y x"\ = K n \t\

3
(4.4S)

Equation (4.48) is satisfied by choosing

x'l = -\t\Kn ty
(4.49)

Vi = |t|K„*« (4.50)

These components of second derivative \x'{ , y", 0] are then transformed to C^'(0) or

C'/(l), as appropriate, in the global coordinate system using the direction cosines ot

the axes of the local coordinate system. The final control points P 2 and Pm _3 are

then solved for using equations (4.35) and (4.38). In this manner, because C"(0)

and C^(l) are vectors in the planes (ti,rii and (t 2 ,ri2) the resulting control points

will no longer necessarily be contained in the plane EiE 2D. Therefore, for curvature

continuous blends the resulting cross-link curves are non-planar.

In the implementation of this work described in Chapter 5 and in order to main-

tain planarity of cross-link curves and their easy control, we developed an alternate

method. In this method we impose the curvature values at the ends of the cross-link

curves as obtained from normal sections of the primary surfaces in the directions t
t

and t 2 . However, we use local coordinate systems containing the plane EiE 2D (i.e..

local x-axis in the tj direction and local y-axis in the n A t
;
direction). In this man-
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ner. the resulting cross-link curve is planar in its entirety and contained in the plane

EiE 2 D. However, this curve is no longer locally a normal section of the blend at Ei

or E 2 unless n • n x
= or n • n 2 = and. therefore, not all conditions of surface cur-

vature continuity are generally satisfied. This implementation of Chapter 5 resulted

in easily controllable blends of smooth form which can be characterized as providing

continuity of curvature of cross-link curves.

4.4 Approximation of the Blending Surface

The blending surface is created using a lofting technique where the cross-link curves

are lofted using the common knot vector from the merging of the knot vectors of

the approximations to the linkage curves. The cross-link curves become isoparameter

curves of the blending surface. As noted earlier, use of the common knot vector and

cross-link curves at the nodes of the knot vector ensures the boundary curves of the

blending surface will be identical with the approximations of the linkage curves.

A technique similar to the improvement of the approximation to the linkage curves

is used to improve the accuracy of the blending surface. The surface is sampled at

the midspan between the nodes of the common knot vector and checked against

tolerances to the specified boundary conditions [Tiller S3]. Position, tangent and

curvature continuity along the linkage curve is guaranteed by the lofting technique.

To check for tangent plane continuity of the blend, we compute the angle between

the unit normal vector to the blending surface, ri(, , along the boundary of the blend

with the unit normal vector to the associated underlying surface. n s ,

(\n h n s |\
<Pj = arccos -

—

———
. (4.ol)

VKi|n sjy

with j = 1,2, to indicate the underlying surface and linkage curve and bj the appro-

priate boundary curve of the blending surface. Sampling is at the midspan between

the nodes as defined in (4.10). If the angle found in (4.51) is greater than the specified
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tolerance, t\, the value t
x

is added to the common knot vector.

To test for curvature continuity, we extract an isoparameter curve in the cross-

link direction from the blending surface, again at the midspan of the nodal points.

The isoparameter curve comes from evaluating the surface over the complete range of

one parameter maintaining the other parameter constant. The blending surface was

constructed such that the cross-link curves become isoparameter curves of the lofted

blend surface. Let the blending surface be given by,

m— 1 n—

1

B(u,u) = Y, T, piJBiMi*)BjA»)> ' 4 - 52 ^

where u. v are the parametric directions along the linkage and cross-link curves. The

isoparameter curve extracted from it is of the form

j=0

with

R;= £ Q l ,J
BlM (U). (4.54)

i=0

We then compute the curvature of the isoparameter curve at the endpoint with a

curvature continuity boundary condition.

ir«)Ai"«)i
K'=

ir (t) |3 •

(4 '5o)

For comparison, we construct a cross-link curve at the same midspan nodal value and

compute its curvature, « c;, in the same manner. The curvatures are then compared

to a relative curvature tolerance, e 2 , defined as

I/O — K r i\

(4.56)

As before, if the test fails the midspan point is added to the knot vector.
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The improvement process for curvature continuity compares the blending surface

at a point with the cross-link curve which would be added to that point if required.

If the new cross-link curve does not improve the surface, it is not added. The im-

provement of the blend surface tests tangent plane continuity first if tangent plane or

curvature continuity is specified. If the tangent plane test fails the point is added to

the knot vector and the next interval is sampled. Curvature continuity is only tested

if tangent plane continuity is satisfied first. Once all intervals are tested the blending

surface is reconstructed with the new knot vector. The process is continued until all

continuity tests are satisfied.

As a final remark, we assert that a blending surface lofted Irom cross-link curves

constructed as presented in Section 4.3 while also being normal sections of the blend

at Ei and E2, is curvature continuous by the Linkage Curve Theorem (Theorem 3.1).

The tangent directions at the end points of the cross-link curve are guaranteed to be

independent from the tangent direction of the linkage curve for appropriately oriented

linkage and directional curves.
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Chapter 5

Numerical Examples

We now illustrate the generation of blending surfaces with several numerical ex-

amples. The first examples demonstrate just position continuity along the linkage

curves. Some examples are given to illustrate some important concepts concerning

blending surface shape control with the bias functions. These examples use simple pla-

nar and quadratic integral and rational surfaces which permit a clear demonstration

of the results. The last sequence of examples illustrate tangent plane and curvature

continuous blending surfaces with complex surfaces representing marine propellers.

The routines to compute, interrogate, and display the blending surfaces were

developed for use in the MIT Ocean Engineering Design Laboratory geometric mod-

eling system, Praxiteles. This system provides an environment for both graphical and

computational interaction between a designer and the Silicon Graphics IRIS 4D 120

GTXB workstation. The basic structure of the system is described in [Hottel 89].

with more advanced versions documented in [Alourdas 90], [Patrikalakis 90a] and

[Hottel 91]. The routines are written in the C programming language with calls to

FORTRAN subroutines in the NAG Mark 13 FORTRAN library [NAG 89] where

required.





5.1 Position Continuous Blends

Position continuity is the simplest type of blend. The term "blend" is used loosely

since the surface generated does not provide a gradual transition between the un-

derlying surfaces but simply connects them. The primary advantage of the position

continuous blending surface is that it is created very quickly. In our implementation,

a preliminary position continuous blending surface is constructed after specification

and approximation of the linkage curves to verify proper parameterization of the link-

age curves. If the linkage curves are designed independently there is a possibility of

introducing unwanted twist or self-intersections into the blending surface. This is

illustrated in Figure 5.1. The first surface is an integral B-spline planar patch of the

form given in equation (3.20), with knot vectors in the u and v directions of

U = (0,0,1,1) V = (0,0,1.1)

and control polygon vertices in three-dimensional space

Po,o = (0.0.0) P ,i =(1,0,0) P li0 = (0,1,0) P ia = (1,1,0)

The linkage curve is linear with knot vector and control polygon vertices in the pa-

rameter space of the patch

X = (0,0,1,1), P„ = (0.2,0.0) Pi = (0.7,1.0)

The second surface patch is also planar with the same u. v knot vectors and control

polygon vertices of

Po.o = (1.0,0) Po.i = (0,0,0) Pi, = (1,0,1) Pi.i = (0.0.1)
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Figure 5.1: Poorly parameterized linkage curves

The linkage curve is linear with knot vector and control polygon vertices in the pa-

rameter space of the patch

X = (0,0,1,1), P = (0.5.0.0) Pi = (0.5,1.0)

The directional curve is the intersection of the two surfaces expressed in three-

dimensional space as a linear spline with knot vector and control polygon vertices

X = (0,0,1,1), Do = (0.0,0) D! = (1.0,0)

A minimum number of cross-link curves with position continuity boundary conditions

along both linkage curves are constructed. Verification of appropriate correspondence

of the linkage curve parameterization is a visual check. As shown in Figure 5.1.

the linkage curves are parameterized in opposite directions, introducing a twist in

the blending surface. To remove the twist, the linkage curve on the second patch
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Figure 5.2: Satisfactory parameterization check

is reparameterized with new control points P = (0.5. 1.0), Pi = (0.5.0.0). and the

visual correspondence check performed again. The results of the new parameterization

are shown in Figure 5.2.

5.2 Bias Function Effects in Tangent and

Cross-Link Curve Curvature

Continuous Blends

As noted in Section 4.3.2. the bias function is used to control the shape of the blending

surface, and can be given as a constant value or as a function based on the param-

eterization of the linkage curves or directional curve. The bias function determines

the magnitude of the first derivatives of the cross-link curves at their endpoints. A

constant value bias function was implemented by [Bardis 89]. The technique requires

the distance between corresponding points on the linkage curves to be relatively con-
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Figure 5.3: Constant scalar bias function. q3
= 0.4

stant. As shown in Figure 5.3. if the distance varies significantly, a constant bias

factor, suitable where the linkage curves are far apart, can result in self-intersections

or cusps in the cross-link curves and the resulting blending surface, or gouging of the

underlying surfaces where the linkage curves are closer together. The patches, linkage

curves and directional curve are the same as those used in Figure 5.2. The blending

surface is tangent plane continuous across both linkage curves, with qj the scalar bias

functions as in equations (4.27) and (4.30), j = 1,2 referring to the corresponding

underlying surfaces and linkage curves. An alternative biasing method is a function

based on the relative distance between corresponding points on the linkage curves.

<7;
=

\E X (^)-E 2 (^)\
5.1

This formulation automatically accounts for changes in relative linkage curve position,

yet allows for user control of the blend shape through variation of the factor. 6r The





Figure 5.4: Distance function bias factor, &_,• = 2.5

scalar factors bj are defined by the user for each linkage curve independently, and

can themselves be constant values or functions of the parameterization of the linkage

curves. An example of a blending surface using the distance formulation is shown

in Figure 5.4. In Figure 5.3, the scalar bias function is qx
— q2 = 0.4, with user-

defined factors bj specified such that q3 = constant. In the distance formulation of

Figure 5.4, 6i = 62 = 2.5 and the bias functions as given by equation (5.1) are now

<7i = <?2 = 0-4|Ei(£,-) — E 2 (£,)|. The additional distance term adjusts the magnitude of

qj to prevent the unwanted intersection of the underlying surface shown in Figure 5.3.

Blending operations are local surface operations which must be carefully controlled

to ensure the global geometry of the underlying surfaces is not changed. As noted in

Chapter 1. the bias function gives the designer a measure of control over the interior

of the blending surface. If the magnitudes of the bias factors are not appropriate,

the blending surface can gouge one or both of the underlying surfaces. We give four

examples of the effect of bias factor magnitudes.
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The first surface is a one quarter of a cylindrical surface expressed as a rational

Bezier surface patch of orders 3x2. The knot vectors are

U = (0.0,0.1.1,1) V = (0.0.1.1)

The control polygon vertices are

P ,o = (0,2,0,1) Po.i = (0.2.2.1)

P li0 = (\/2,A 0, 4=) Pi.i = (v/2, \ft, >/2, 4=)
V- V-

Pw = (2,0.0,1) P2.1 = (2.0.2.1)

The linkage curve is a linear spline and has the knot vector and control points

X = (0,0,1.1) P = (0.5.1.0) P l
= (0.5,0.0)

expressed in the parameter space of the surface. The second surface is an integral.

bilinear planar B-spline surface with knot vectors

6T = (0,0,1,1) V = (0,0,1,1)

and control polygon vertices

Po.o = (1,0,0) Po.i = (1,0,2) P li0 = (3.2.0) Pu = (3.2.2)

The linkage curve is a linear spline expressed in the parameter space of the surface

with knot vector and control polygon vertices

X = (0,0.1,1) P = (0.7.1.0) P x
= (0.7.0.0)

76





Figure 5.5: Curvature continuous blend, bias factor bj — 6

The directional curve is a linear spline with knot vector and control polygon vertices

Y= (0,0,1.1) D = (2,0.2) D, = (3.2.2)

In the first example we show a well-specified blending surface. The bias factors

are equal to 6
;
= 6 along each linkage curve with curvature continuity specified. The

blending surface is shown in Figure 5.5. The bias factors are then increased to bj = 12

for each surface. Recalling the distance function as given in Equation 5.1. a larger

bias factor weakens the biasing effect. We will call this a weak bias, as compared to

a small bias factor which gives a strong bias condition. This is clearly demonstrated

in Figure 5.6. For very strong bias factors, especially with curvature continuity

specified along the linkage curve, it is visually difficult to tell the difference between

the underlying surface and the blend. Furthermore, the stronger the biasing, the

further the associated boundary effect is carried into the interior of the blend. If

the bias factor is too strong, the blending surface will intersect the other underlying
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Figure 5.6: Curvature continuous blend, bias factor bj = 12

surface. In Figure 5.7, we try to pull the blending surface towards the planar surface

by specifying an imbalance between the bias factors. The bias factor for the plane

is b2 = 3, while the bias factor for the cylindrical surface is b-[ = 10. The cylindrical

surface is gouged by the blend because the biasing at the linkage curve on the plane

is too strong. We found that to eliminate this type of gouging, this biasing must be

reduced.

Increasing the biasing associated with the gouged surface just exacerbates the

problem, creating not only inappropriate intersections of the blending surface with

both underlying surfaces but self-intersections of the blending surface as well (see

Figure 5.8).

5.3 Marine Propeller Fillets

Modern marine propellers represent particularly complex examples of sculptured sur-

face engineering. Demanding performance criteria require accurate machining and





Figure 5.7: Blend with gouging, bias factors b\ — 10,62 = 3

Figure 5.8: Blend with loop, bias factors bj = 3
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high surface quality. Hand finishing techniques are usually inadequate. As noted in

Chapter 1. the use of numerically controlled machining requires explicit mathemat-

ical representation of the entire surface, including the propeller blade-to-hub fillet.

Failure to properly represent the fillet may result in removal of fillet material during

blade machining, or gouging of the blade faces or hub may occur.

The propeller fillet is both a structural and hydrodynamic surface addressing

concerns which arise at the intersection of the propeller blade with the hub. The

fillet contributes to the structural strength of the blade and aids in the reduction of

vibrational blade loading [Allen 90]. By replacing a sharp edge intersection with a

smooth transition surface, adverse hydrodynamic effects are also reduced.

In Chapter 3, it was noted that parametric B-spline surfaces are ideally suited

for the representation of complex surfaces. Creation and interrogation of marine

propeller surfaces represented with NURBS surfaces is presented in [Tuohy 91c] and

[Patrikalakis 90a]. A brief introduction to propeller geometry is provided in Ap-

pendix A.

A blending surface for the propeller blade-to-hub fillet will be constructed using

two techniques. The first method uses the blending surface algorithm demonstrated

earlier in this chapter. The second method is an automatic blending surface designed

to replicate a standard propeller fillet geometry called the 3T-T/3 fillet [Gorman 79]

[Sabol S3]. A detailed discussion of the geometric requirements and implementation

is included in Appendix B. The blending surface resulting from this implementation

is a truly rational B-spline surface. For comparison, tangent plane and curvature

continuous integral B-spline fillet blends are created using the general algorithm with

linkage curves defined by the 3T-T/3 method. These blends are compared with the

rational B-spline surface.
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5.3.1 Integral B-Spline Surface Fillet

As the first example of the blending surface method applied to the propeller fillet

problem, an integral B-spline blending surface is created between a B-spline surface

representing a propeller blade and a rational B-spline surface representing a hub. A

wire frame of the propeller blade, which has a maximum radius of ten. is shown in

Figure 5.9. The hub is a linear by quadratic NURBS surface representing a cylinder of

radius one. The linkage curve on the propeller is an isoparametric curve corresponding

to u = 0.2. The v = isoparameter curve of the propeller blade is selected as

the directional curve. To find the linkage curve on the hub. the directional curve

is projected orthogonally onto the hub surface. The linkage curve is the geodesic

offset of the projection, with an offset distance of 0.2 units in three-dimensional

space. The linkage curve is expressed in the parameter space of the hub. All of

the curves were constructed interactively using Praxiteles. Two blending surfaces

were created using these surfaces and linkage curves. Figure 5.10 shows a tangent

continuous blending surface with a bias factor bj = 2.0 applied along both linkage

curves. The position tolerance specified for the blending surface approximation is

0.01 The achieved tangent angle error from equation (4.51) is 0.2 degrees. Figure 5.11

shows the same blending surface with propeller blade and hub.

The blending surface in Figures 5.12 and 5.13 is curvature continuous with a bias

factor bi = 7.0 along the blade linkage curve, and b2 = 9.0 along the hub. To provide

an indication of the performance of the blending algorithm, a series of example blend-

ing surfaces with these bias factors were created with different accuracy requirements.

The results illustrating achieved position, tangent angle (equation 4.51), and relative

curvature error (equation 4.56), are shown in Table 5.1.

5.3.2 3T-T/3 Fillet I
The most common method for the design of a propeller blade-to-hub fillet is the

3T-T/3 fillet developed at the Philadelphia Naval Shipyard. This design has been
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Figure 5.9: B-spline representation of a propeller blade
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Figure 5.10: Tangent continuous blade-to-hub fillet blend for blade in Figure 5.9

Figure 5.11: Tangent continuous fillet between blade in Figure 5.9 and hub

S3





Table 5.1: Curvature continuous fillet with isoparametric linkage curve of Figure 5.13

Required relative curvature tolerance=10.0%

Required tangent angle tolerance=2 degrees

Required

Position

Tolerance

Number of

Control pts

Achieved Errors

Position

Angle

( degrees

)

Curvature

(Percent)u V

0.01 41 6 0.00109 0.732 6.40

0.005 53 6 0.000496 0.242 7.23

0.001 73 6 0.000130 0.058 6.61

0.0005 84 6 0.000130 0.058 6.61

0.0001 124 6 0.0000422 0.025 6.44

Required relative curvature tolerance=:5.0%

Required tangent angle tolerance=2 degrees

Required

Position

Tolerance

Number of

Control pts

Achieved Errors

Position

Angle

(degrees)

Curvature

(Percent)u V

0.01 44 6 0.00109 0.733 4.43

0.005 54 6 0.000496 0.242 4.65

0.001 77 6 0.000130 0.058 5.00

0.0005 S8 6 0.000130 0.058 5.00

0.0001 128 6 0.0000422 0.023 4.07
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Figure 5.12: Curvature continuous blade-to-hub fillet blend for blade in Figure 5.9

Figure 5.13: Curvature continuous fillet between blade in Figure 5.9 and hub
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Figure 5.14: 3T-T/3 fillet blend for blade shown in Figure 5.9

adopted by the Naval Sea Systems Command (NAVSEA) as standard geometry for

naval propeller fillets [Sabol 83]. Experience has shown that the 3T-T/3 fillet is an

effective transition both structurally and hydrodynamically. In Appendix B, the pro-

cedure for constructing linkage curves and cross-link curves is presented in detail.

The fillet surface is approximated as described in Section 4.4. The fillet is tangent

continuous across the linkage curves. Figures 5.14 through 5.16 show the resulting

3T-T/3 fillet surface. The blade in this example is the same as that used in Sec-

tion 5.3.1. The hub is a linear by quadratic surface of radius 1.25 units. The shape

function (Equation B.6) is specified to create a fillet with maximum thickness near

mid chord, and 30% of the maximum thickness at the leading and trailing edges. The

shape function implemented approximates a graph given in [Sabol 83]:

f(x) = 2.1x
2 - 1.4x

3 + 0.3, 0<x<l
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Figure 5.15: 3T-T/3 fillet blend for blade shown in Figure 5.9

Figure 5.16: 3T-T/3 fillet with blade and hub
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The mapping of the parameter u of the intersection curve of the blade to the hub to

the parameter x in the shape function x = x(u) is

ue [0,0.25] => x = ±u (5.2)

u€ [0.25,0.5] =» x = 4(0.5 - u) (5.3)

ue [0.5.0.75] => x = 4(ti-0.5) (5.4)

uG [0.75. 1.0] =» x = 4(l-u) (5.5)

The implementation of the 3T-T/3 algorithm is still experimental. As noted in

Appendix B. the only error check currently implemented is position continuity of

the blending surface with the linkage curve on the hub. For the fillet illustrated in

Figure 5.16. the achieved maximum position error is 0.03.

To illustrate the robustness of the algorithm, a 3T-T/3 blend was created using

a propeller blade of significantly different shape. The result is shown in Figures 5.17

through 5.19.

5.3.3 Pseudo 3T-T/3 Fillet

The 3T-T/3 fillet was specifically designed to provide a suitable hydrodynamic and

structural transition for marine propeller blades. We have no reason to believe the

fillet created in Section 5.3.1 has similar properties. For the last two examples, we

create propeller fillet blends using the method introduced in Chapter 4. with linkage

curves of the 3T-T/3 blend. We will call this blending surface a pseudo 3T-T/3 fillet.

In the first example, a tangent plane continuous fillet is created. This blend is most

similar to the standard 3T-T/3 fillet since it. too, is tangent plane continuous. The

fillet is illustrated in Figures 5.20 and 5.21, using the same propeller blade and hub

as was used in Section 5.3.2. A series of examples were created with varying degrees

of position accuracy specified. The results are given in Table 5.2. The bias factor 6,

for both the blade and the hub is 3.0.
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Figure 5.17: Propeller blade

Figure 5.18: 3T-T/3 fillet for blade in Figure 5.17
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Figure 5.19: 3T-T/3 fillet surface for blade shown in Figure 5.1'

Figure 5.20: Tangent continuous pseudo 3T-T/3 fillet for blade in Figure 5.9
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Figure 5.21: Tangent continuous pseudo 3T-T/3 fillet for blade in Figure 5.9

Table 5.2: Tangent continuous pseudo 3T-T/3 fillet

Required tangent angle tolerance=2 degrees

Required

Position

Tolerance

Number of

Control pts Achieved Errors

u V Position Angle(deg)

0.01 36 4 0.00192 1.35

0.005 44 4 0.000564 0.52

0.001 65 4 0.000161 0.29

0.0005 75 4 0.000114 0.27

0.0001 109 4 0.0000462 0.067
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Table 5.3: Curvature continuous pseudo 3T-T/3 fillet

Required relative curvature tolerance=10.0%

Required tangent angle tolerance=2 degrees

Required

Position

Tolerance

Number of

Control pts

Achieved Errors

Position

Angle

(degrees)

Curvature

(Percent)u V

0.01 46 6 0.00178 0.602 9.25

0.005 50 6 0.000561 0.517 9.39

0.001 65 6 0.000161 0.290 6.10

0.0005 75 6 0.000114 0.266 4.12

0.0001 109 6 0.0000462 0.0670 5.74

0.00005 128 6 0.0000188 0.0584 2.01

Required relative curvature tolerance=1.0%

Required tangent angle tolerance=2 degrees

Required

Position

Tolerance

Number of

Control pts

Achieved Errors

Position

Angle

(degrees)

Curvature

(Percent)u V

0.01 77 6 0.000412 0.0533 0.983

0.005 71 6 0.000556 0.0644 0.901

0.001 79 6 0.000131 0.0581 0.950

0.0005 86 6 0.000114 0.0525 0.956

0.0001 116 6 0.0000462 0.0387 0.765

0.00005 130 6 0.00001S8 0.0538 0.801

To complete the examples, a curvature continuous pseudo 3T-T/3 blend is illus-

trated in Figures 5.22 and 5.23. The bias factor for the blade is b^ = 7.0, and b2 = 9.0

for the hub. These bias factors were selected experimentally to create a blend which

most resembles the standard 3T-T/3 fillet. As with the other examples, a series of

blending surfaces was created with varying degrees of accuracy. The results are shown

in Table 5.3.

Review of the tables indicates the number of control points required to represent

a curvature continuous blend is heavily dependent on the specified position tolerance.
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Figure 5.22: Curvature continuous 3T-T/3 fillet for blade shown in Figure 5.9

Figure 5.23: Curvature continuous 3T-T/3 fillet for blade shown in Figure 5.9
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For a required position tolerance of 0.01. 10 additional control points in the u direction

are required to create a blend with a relative curvature error tolerance of 10%, when

compared with the tangent continuous blend listed in Table 5.2. Decreasing the

relative curvature error tolerance by one order of magnitude for the same position

tolerance of 0.01 more than doubles the required number of control points. If the

required position tolerance is now reduced to 0.001, the curvature continuous blend

with a relative curvature error tolerance of 10% has exactly the same number of

control points as the tangent continuous blend. Decreasing the relative curvature

error tolerance to 1% requires only 14 additional control points.
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Chapter 6

Conclusions and

Recommendations

In this thesis, a general algorithm for the representation and approximation of

blending surfaces between two non-uniform rational B-spline (NURBS) surfaces using

a surface of the same class is presented. As discussed in Chapter 1, blending surfaces

are generally procedural surfaces which are difficult to process. Further, there are no

standard data exchange formats for procedural surfaces. Our use of NURBS surfaces

is important because it facilitates the exchange of geometric information between

various geometric modelling systems, and design and manufacturing systems.

The method approximates the blending surface with an integral B-spline surface

which is up to curvature continuous with the underlying surfaces along the linkage

curves. Several methods are available for specifying the linkage curves. The method

allows the degree of continuity along the linkage curves to be specified independently,

enhancing its flexibility. Bias functions are control parameters which influence the

shape of the blending surface. We demonstrated that if weak biasing is used, the ef-

fect of the boundary condition is confined to a narrow region along the linkage curve.

Strong biasing propagates the boundary conditions far into the blending surface in-

terior. If the biasing is not carefully controlled, however, inappropriate intersections
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with the underlying surfaces can result. Our implementation uses a bias function

based on the relative distance between corresponding points on the linkage curves.

This technique adjusts the magnitude of the bias so that in regions where the linkage

are close together, the probability of gouging the underlying surfaces is reduced but

not eliminated. Careful user control is required.

An additional control element is the directional curve. Our implementation guar-

antees the cross-link curve will be oriented such that its tangent direction at the

endpoints is towards the directional curve through the use of an angle comparison

algorithm.

The linkage curves are approximated with low degree integral B-spline curves.

An adaptive sampling technique adds knots at appropriate locations until the ap-

proximation meets all specified tolerances. The cross-link curves are also represented

with low degree B-spline curves. The cross-link curves are constructed such that the

surface will satisfy the specified continuity conditions at the linkage curves. Meth-

ods are implemented for position, tangent plane and curvature continuity along the

linkage curves. The cross-link curves then form a family of curves which become the

isoparameter curves of a lofted blending surface. The procedure again uses adaptive

sampling to improve the approximation. The surface is sampled at the midpoints of

the common knot vector formed by merging the knot vectors of the linkage curves.

The error checking routine compares the position and surface normal vector of the

blending surface with the same information from the corresponding underlying sur-

face. To compare curvature, normal curvature at the endpoints of an isoparameter

curve extracted from the blending surface is compared with the normal curvature

of a cross-link curve created at the same node using the underlying surfaces in the

normal manner. Points which fail to meet the prescribed tolerances are added to the

knot vector and the surface relofted. Throughout the improvement process, position

accuracy is maintained.

We illustrate the practicality of the method by creating marine propeller blade-to-
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hub fillets. Three types of fillets were created with varying degrees of continuity, and

each was evaluated over a range of specified position accuracies and. where applica-

ble, relative curvature tolerances. Numerous examples of fillet surfaces with varying

degrees of accuracy were examined. We found that required position tolerance with

curvature continuity specified has a significant effect on the resulting surface. When

the position tolerance is relatively course (of order 0.01), the magnitude of the rela-

tive curvature tolerance controls the number of control points necessary to represent

the fillet. In the case of the pseudo 3T-T/3 fillet, decreasing the relative curvature

tolerance by one order of magnitude nearly doubles the number of required control

points. If the position tolerance is smaller, the change in curvature tolerance has

less effect. It was demonstrated that position accuracy is maintained during the loft-

ing process, with the achieved position error one to two orders of magnitude better

than the position tolerance specified. It was also noted that there is little difference

in terms of data storage between representations of tangent continuous fillets and

curvature continuous fillets when created with small position tolerances.

The shape of the linkage curves and the underlying surfaces has an impact on the

achievable degree of continuity. We found that the fillet designed with an isopara-

metric linkage curve on the blade could not achieve better than 4% relative curvature

error, no matter how small we made the required position tolerance. In comparison.

it was possible to create fillets with less than one percent curvature error when using

the 3T-T/3 linkage curves, even with a relatively coarse position tolerance of 0.01.

The pseudo 3T-T/3 fillet effectively illustrates the practical application of the

algorithm. The rational B-spline 3T-T/3 fillet has the advantage of being automatic

in the creation of the fillet. On the other hand, the general algorithm can create

a fillet which approximates the rational fillet while retaining the flexibility of user

control through the bias functions. Furthermore, the fillet can be either tangent

plane or curvature continuous while the rational fillet, by its design, can be at best

only tangent plane continuous.
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The blending algorithm presented in this thesis has the following advantages:

1. The approximation of the linkage curves and blending surface is adaptive. Sam-

pling and knot addition depends directly on the distribution of error.

2. The blending surface approximation is in a standard format allowing direct

exchange between different geometric modelling systems which use the standard

data exchange formats [Smith 88]. Further, the surface is of low degree which

permits processing on less capable geometric modelling systems.

3. The user has direct control of the shape of the blending surface through speci-

fication of boundary conditions, bias functions, and the directional curve.

The following areas are identified for further work:

1. Extend the implementation of the method in Chapter 5 beyond cross-link curve

curvature continuity to cover normal section curvature continuity.

2. Provide interrogation methods for the blending surface to ensure there are

no unwanted intersections with the underlying surfaces or self-intersections

[Kriezis 901. This might be included as part of the adaptive sampling process.

3. Generalize the algorithm to allow the blending of more than two surfaces.

4. Experimentation with the directional curve to gain greater control of the blend

shape. Experimentation with alternate parameterization schemes of the linkage

curves and the resulting blending surface.

5. Improving automation of methods for controlling shape and position of the

linkage curves. This might include improving the accuracy and efficiency of the

rational 3T-T/3 algorithm currently implemented.

6. Automation of bias function specification to eliminate unwanted intersections.
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Improve methods for visualizing continuity conditions across the boundaries of

blending and underlying surfaces.
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Appendix A

Marine Propeller Geometry

Marine propeller blade geometry is usually described with reference to a Cartesian

coordinate system. The orientation presented here is as suggested by [Kerwin 86].

The x-axis is aligned along the axis of rotation of the propeller and assumed to be

positive in the direction of mean flow. The y-axis is vertical and passes through the

mid-chord of the root section of one blade. The z-axis is oriented to form a standard

right-handed Cartesian coordinate system (see Figure A.l). A cylindrical coordinate

system with r the radial coordinate from the x-axis and 9 the rotational coordinate,

measured about the x-axis such that 9 = on the y-axis. is also used.

The propeller blade is typically constructed of a number of two-dimensional foil

sections lying on the expanded planes of cylindrical surfaces coaxial with the x-axis.

The chord of the section is the two-dimensional straight line segment connecting the

leading and trailing edges. In three dimensions the chord is an arc along a helix and

is a measure of the pitch angle of the blade at the particular radial distance of the

section. The leading edge is determined by advancing, in the negative direction, along

a cylindrical or conical helix defined by the radially distributed pitch angle a distance

equal to half the chord length. The shape of the foil section is defined in terms of

the chordwise distribution of camber . f{s), and thickness . t(s) (see Figure A. 2). The

parameter s is a coordinate defined along the chord, generally at the leading edge
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Figure A.l: Propeller blade geometry (from [Kerwin 86])

SUCTION FACE

CAMBER LINE

TRAILING EDGE

LEADING
EDGE

Figure A. 2: Foil section
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and 1 at the trailing edge. The line traced by f{s) is the camber line , denned as the

locus of the midpoints of straight line segments spanned across the section such that

the normal to the segment at its midpoint is tangent to the camber line. The camber

function defines the shape of the camber line relative to the chord of the section. The

half-length of the segments which span the section is defined by the thickness function.

These segments define pressure and suction faces of the blade. The pressure face is

the blade surface facing aft which experiences an increase in pressure when propelling

a ship ahead, while the suction face , or back, experiences a decrease in pressure. The

pressure differential results in lift. The root section is the foil section formed by the

intersection of the blade with the hub. prior to any blending or filleting operations.
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Appendix B

Creation of a 3T-T/3 Marine

Propeller Fillet

This Appendix presents a detailed description of our implementation of the stan-

dard 3T-T/3 marine propeller fillet using the general algorithm of this thesis.

First, we recall the general method for the creation of a blending surface. We

specify linkage curves on the blade surface and the hub. In place of a directional curve

we construct the cross-link curves in a fillet plane defined by a geometric function.

The cross-link curves are a family of rational B-spline curves which satisfy another

specific geometric relationship. Finally, the fillet surface is created by lofting the

cross-link curves.

Each cross-link curve is a planar curve constructed of two circular arcs. One of

the arcs is tangent to the propeller blade, and one is tangent to the hub surface. In

addition, the arcs are tangent to each other. The circular arc tangent to the blade

has a radius of 3T, while the arc tangent to the hub has a radius of T/3, hence the

name given the fillet. The dimension, T, is defined in section B.l, below. Figure B.l

illustrates the fillet geometry. The generation of the fillet is as follows:

• Compute the intersection curve of the blade and hub, and the maximum thick-

ness of the root section.
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UNFILLETED
BLADE CONTOUR

HUB SURFACE
IN FILLET PLANE

Figure B.l: 3T-T/3 fillet cross-link curve geometry

• Find the linkage curve on the blade surface.

• Establish the fillet plane orientation and the center of the circular arc associated

with the linkage curve on the blade.

• Compute the intersection of the fillet plane with the hub.

• Find the center of the T/3 circular arc and its associated contact point on the

hub. This is the linkage point on the hub.

• Construct circles in the fillet plane using the computed centers. Subdivide the

circles at the points of tangency with the underlying surfaces and with each

other.

• Join the arcs to form the cross-link curve.

• Approximate the blending surface from the family of cross-link curves by lofting.

• Sample and improve the approximation.
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B.l Linkage Curve on the Blade

The linkage curve on the blade is defined to lie on the blade surface at an arc

length distance T from the blade-to-hub intersection. The original development of the

3T-T/3 fillet suggests that the dimension T is the helical arc length in the root section

from the pressure face to the suction face of the unfilleted blade contours. The di-

mension is a local arc length parameter in that it varies with chord length [Sabol S3].

NAVSEA further recognizes the imprecision of the definition and so provides manu-

facturing guidance to modify the fillet gradually around the section so that it is fair.

[Sabol 83] suggests that T can be defined as a function of the maximum thickness of

the root section and a shape factor which varies with chord length.

The maximum thickness of the root section of the blade is found using techniques

for feature extraction from B-spline representations of marine propellers presented

by [Patrikalakis 90a]. The propeller blade is represented as a bicubic non-uniform

integral B-spline surface:

n— 1 m — 1

R4A (u,v) = E E VijBUu)Bji4 (v) (B.l)

!=0 ;=0

The parameter u corresponds to the chordwise direction from the trailing edge on the

suction face to the leading edge, to the trailing edge on the pressure face. The v pa-

rameter corresponds to the spanwise direction, hub to blade tip. The u-isoparameter

lines thus approximate the intersections of the blade surface with cylindrical surfaces

coaxial with the propeller axis of rotation. Without loss of generality, we assume a

cylindrical hub. and the section of interest is the root section formed by the intersec-

tion of the cylindrical hub with the blade. Since the intersection curve is known to be

a simple regular curve without self-intersections, we use a lattice evaluation technique

to find the intersection. Data points representing the intersection of the cylindrical

hub surface with isoparameter curves in the v direction (i.e.. lines of constant u),

extracted from the blade surface hub to tip, are calculated using a simple bisection
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method. While more elaborate or efficient methods are available, this one is quaran-

teed to find the appropriate intersection. The intersection curve 'i(t) is approximated

as a cubic integral B-spline curve

n-l

I(t) = £l,£U0 (B.2)

t=0

with knot vector T = (t ,ti,

.

. . , £n+w_i), and N = 4. The approximation of the

intersection data is similar to the method described in Section 4.2. In this case. (B.2)

interpolates the intersection data at the nodes
<f,

of the knot vector

1
3

fc=oI>+fc. 0<i<n-l (B.3)
,J

fc=i

such that
n-l

I(&) = £ Ii^i.4«0 = I(fc), < z < n - 1 (B.4)

Since (B.4) is of the same form as (4.4) it can be written in matrix form,

[N]{I] = {i}, (B.5)

and, like (4.5), can be solved using standard linear algebra techniques. The approx-

imating B-spline is expressed in terms of normalized cylindrical coordinates. The

approximating intersection curve is virtually expanded to a plane by cutting it along

a generatrix not intersecting the section. The section curve is thus a planar curve

assumed to be at least C2 continuous, lying on the expanded cylinder. To find the

camber line, a correspondence is established between parameters on the pressure and

suction faces in accordance with the definition of camber line as given in Appendix A.

These are referred to as matching parameters. [Patrikalakis 90a] develops a system

of differential equations which, when integrated with respect to the arc length of the

section chord, completely define the camber line. The integration proceeds until an

irregular point is reached. An irregular point represents a point where the tangent
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vectors to matching parameters are parallel to each other. If the segment connecting

the matching parameters is also normal to the tangent vectors, the point is called

the critical point. [Patrikalakis 90a] shows that there is only one critical point on the

camber line and that it corresponds to the maximum thickness of the section. Thus.

to find the maximum thickness of the section we use the following procedure:

1. The root section curve is found and approximated as an integral B-spline curve,

l(t).

2. The system of differential equations given in [Patrikalakis 90a] is integrated us-

ing a variable step Adams method [NAG 89] until an irregular point is reached.

3. A Newton- Raphson method is then used to accurately solve a nonlinear system

of equations to find the critical point. The maximum thickness. Tmax , of the

section is derived directly from the definition of the critical point, knowing the

section curve.

Readers interested in the details of the development of the systems of equations are

referred to [Patrikalakis 90a].

The parameter T can now be found. As noted earlier, T is a function of the maxi-

mum section thickness and a shape factor. The shape factor is defined to produce the

maximum fillet thickness near midchord and a minimum thickness near the leading

and trailing edges of approximately 1/3 the maximum thickness. In our implementa-

tion the shape factor is defined as a general cubic function of the form

f(x) = Ax 3 + Bx 2 + Cx + D = 0, (B.6)

where < x < 1. We define a function x = x(u) (equations (5.2) to (5.5)), to establish

a mapping between the variable x and the parameter u of the propeller blade-to-hub

intersection curve, expressed in the parameter space of the blade, to achieve the proper

shape of the fillet. The local thickness dimension along the intersection curve is then
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defined as

Tl
(u) = Tmax f(x(u)) (B.7)

To construct the linkage curve on the blade, we evaluate the approximating

B-spline curve of the intersection curve. At each value of u, we extract an isopa-

rameter curve, u = constant. The corresponding point on the linkage curve is found

along this isoparameter curve, measured in terms of arc length the distance T/(u).

The linkage curve rprop is approximated in the parameter space of the propeller blade

as before, using as the initial knot vector the knot vector of the approximation to the

intersection curve.

The general algorithm requires two linkage curves with each curve defined inde-

pendently. In the case of the 3T-T/3 blend, however, there is a specific geometric

relationship between a point on the linkage curve of the blade and the associated

point on the linkage curve of the hub. Because of this dependency, we do not specify

the linkage curve on the hub directly but find the corresponding points on the hub

while constructing the cross-link curves.

B.2 Fillet Plane

To establish the fillet plane, we evaluate the approximations to the linkage curve on

the blade and the blade-to-hub intersection curve at the nodes £, of the common

knot vector. At each node there is a unique fillet plane described by the equation

[Hildebrand 76]

Ax + By + Cz + D = 0. (B.8)

The fillet plane is established by the normal vector to the blade surface computed on

the intersection curve at a node, and the corresponding point on the linkage curve

(see Figure B.2).

The unit normal vector to the blade surface, nprop , at a node of the intersection
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Figure B.2: Fillet plane orientation
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curve, is found with equations (4.22) to (4.24). A second vector p is defined as

, c s
Eprop (&) - I(&)

p(* )=
HWf.-)-«&)l

(B '9)

where Eprop (£,) is the linkage curve position on the blade evaluated at the node £,-,

and I(£
t ) the corresponding point on the approximation to the intersection curve. Let

rip be a unit vector which is normal to the fillet plane

np^'^ ~ T^TTTTTT: T7TT-
(B.10)

In terms of equation (B.8),

rip = Az + Bj + CJfe. (B.ll)

The remaining term in (B.8) is

D = -nprop(&) • Eprop(^)- (B.12)

B.3 Cross-Link Curves

To construct the cross-link curves, the centers of the two circular arcs shown in

Figure (B.3) and the three points of tangency must be determined.

B.3.1 Centers of Circular Arcs

The center of the 3T circle is found first. The first parametric derivative. R* =

R*
<4
(u,i>), of the propeller blade in the v direction (3.21) is computed at the corre-

sponding point on the linkage curve, Eprop (<f t ). The vector q defined by

q = n
p
ARV (B.13)
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BLADE

- HUB

Figure B.3: 3T-T/3 detailed geometry
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gives the direction to the center of the 3T circle. L.

L = Q(u,t;) + 3rA (B.14)
|q|

where Q(u, v) is the point on the blade surface corresponding to the point Eprop (£ t )

on the linkage curve, expressed in three-dimensional coordinates. Likewise, the vector

q, defined in Equation (B.13), is evaluated at the corresponding point on the linkage

curve.

To locate the center of the T/3 circle, S. we must find the intersection of the fillet

plane with the hub. The hub is given as a rational B-spline surface.

tf.3(". v) = v^ n _ 1
_ 8

—
, xrt , x

(B.lo

where H(u, v) — (Hx,Hy
,Hz ), and

/fx(u.u)= ^n-1
'

8
—

, , „ , N
(B.16,

Hy
and Hz are defined similarly. The intersection of the fillet plane defined by (B.S'

is therefore

AHX + BHV + CH, + D = 0. (B.17•y

Since A.B, and C are constants from (B.ll), (B.17) can be rewritten as

n-l 8

/(«, v) = Y.Y. wiAAxi,j + Byitj + CrM + D)^v(«)Bj ,
3 (v) = (B.18'

If / = 0, then df = /u du + fvdv = 0, or

du _ ^
B.19

This formulation requires special treatment when fu = or /„ = 0. The difficulty can
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du fv

dt

dv

^11 + fl

fu

dt ,/fu n

be overcome by expressing the intersection curve as a function of the parameter, t,

which leads to the following system of differential equations [Kriezis 90]

df du dv

i = >«* + '-*=° (B -20)

(B.21)

(B.22)

The system of differential equations (B.21) and (B.22) are solved using an Adams-

Bashforth technique [NAG 89] to find points along the intersection curve of the fillet

plane with the hub surface. The geometric requirements for the T/3 circle are that it

1. be tangent to hub, and

2. be tangent to the 3T circle at a point between the points of tangency of the

circles on the hub and blade.

Using simple geometric construction it can be shown that the center of the T/3 circle

is located at the intersection of a circle of radius (3T) — Ti/3), centered at L, and a

curve in the fillet plane offset from the intersection curve of the fillet plane with the

hub at an offset distance Tj/3 (see Figure B.4). The center of the circle must be in

the fillet plane and, therefore, satisfy (B.8). The second requirement is that it lie on

a circle of radius T//3, centered at L. The equation of a sphere, centered at L with

radius (3T) — I//3) is

(x - tf + (y _ iPy + {z _ C )2 _ (321 - j? = 0. (B.23)

where (t,,ip,() are the three dimensional coordinates of L. The intersection of the

fillet plane with this sphere is a circle of radius (T/ — T//3). We can therefore find the

center S by restricting the solution to points which satisfy the equation of the fillet

plane (B.8). By using the equation for a sphere we free ourselves from working with a
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TRIAL
SOLUTION

Figure B.4: Center of T/3 circle

local coordinate system. We compute the tangent vector t(t) to the fillet plane to hub

intersection curve by solving the system of differential equations (B.21) and (B.22).

The vector n* is the vector product of the normal vector to the fillet plane and the

tangent vector, t

n"(t) =np At(i). (B.24)

The center of the X//3 circle is found by computing

S = Y|^||+HAff
Ar(ti(t),v(0) (B.25-

using an adaptive step size marching method. The solution of (B.25) which solves

both equations (B.8) and (B.23) is the center, S.

B.3.2 Generation of Cross-Link Curves

We now have all the information necessary to create the cross-link curves, namely,
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1. the center of the 3T circle, L = (Lx , Ly , L z ),

2. the point of tangency of the 3T circle with the propeller blade. Q(£;

(Q*iQv,Q.),

3. the center of the T/3 circle. S = (5r , Sy , 52 ),

4. the point of tangency of the T/3 circle with the hub, and

5. the normal vector to the fillet plane. n
p

.

Each circle is defined as a rational B-spline curve

LUo^Bu3 (t)

A(t) = ^T8 „ 7\ (B.26"

£,=o h
x
BXt3 {s)

where < i, s < 1. Let A be the circle of radius 3T/, in the fillet plane with its center

at L. and C the circle of radius X//3 centered at S. also in the fillet plane. We seek

to subdivide these curves at the points of tangency with the underlying surfaces and

with each other, then join the segments to form the cross-link curve.

Let the point Q = (Qx , Q y , Q z )
(equation (B.14)) be the coordinates of the point

of tangency between A(t) and the blade surface. We define the parameters tj.Sj

as the values associated with the points of tangency, j, where the circles are to be

subdivided. Given A(i) = (x(t),y(t), z{t)), the point of tangency of A(t) with the

blade surface is the value t\ such that

(*(*i) - Qz)
2 + (y(*0 - Qy)

2 + (z(tx )
- Q z )

2 = (B.28)

is satisfied. A minimization technique [NAG 89] is used to find t
x

. A similar expression

is evaluated to find the parameter s\ where C is tangent to the hub.

We find the parameters associated with the intersection of the two circles in the

same manner. In this case, we evaluate the intersection of each circle with a sphere
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located at the other center. The circle described by A{t) lies on the sphere

(x(t) - L r )

2 + (y(t) - L y )

2 + (z(t) - Lz )

2 - (3T,)
2 = (B.29)

Similarly, the smaller circle C lies on the sphere

(x(s) - Sr )

2 + (y(s) - Sy )

2 + (z(s) - Szf - (jj
2 = (B.30)

At the point of tangency between the two curves, the spheres (B.29) and (B.30) are

also tangent. Using a minimization technique with respect to t. we find the intersection

of A(t) with the sphere given by equation (B.30). Similarly, the parameter associated

with C(s) is found minimizing equation (B.29) with respect to 6.

Knots are added to the knot vectors of A(t), C(s), at the parameter values tj, Sj, j =

1,2, and the curves subdivided using the Oslo algorithm described in Section 3.2.1.

The circular arcs are rational B-spline curves of order 3, geometrically identical to

the segments from the original circles between the parameters ti,^ and Si,S2, each

with a new knot vector normalized over the interval [0, 1]. Referring to the segments

as A(t) and C(s) as before, the curve A{t) has m control points, while C(s) has n

control points. The segments are now joined to create the cross-link curve.

To join the two curve segments we combine the knot vectors and the control points.

This results in a double control point at the intersection of the curve segments, one

of which must be removed. Recalling the formulation of a rational B-spline curve,

= i:r=-o'

r
,p.B,,(t)

(B31

T£ihiBi*{s)
C(S) = A

=
n-1 I. V < (

B - 32
)

the double control point is P and Kn_i. Because the homogeneous coordinates are
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not. in general, equal, we normalize both curves:

2-i=0 W
i
hn-\O u3 [t)

C(S) = ^-Tn'/A • (
B - 34

~

where u.' and /i n _i are the homogeneous coordinates of the double control point. We

are now free to remove one of the control points at the intersection. The knot vectors

are combined as follows. The knot vectors are

T = (t J l
tm+2 ) (B.35)

S = (s ,su ....sn+2 )
(B.36)

where T is associated with A, and S with C. To combine the knot vectors, we remove

the multiple knots sn , 5n+1 ,6n+2 . Because we remove one control point, the knot t is

also removed. Finally, the range of the knot vector T is changed

r = (t 1 + l,ta + l W2 + I) (B.37)

to keep the knot vectors T and 5 from overlapping. The combined knot vector spans

the interval [0,2], and is then normalized over the interval [0. 1].

B.4 Approximation of 3T-T/3 Fillet Surface

The approximation of the fillet surface uses the same method as the approximation

of the integral B-spline surfaces described in Chapter 4. The knot vectors of the

individual cross-link curves are merged to form a common knot vector. The cross- link

curves are then lofted to create a rational B-spline surface.

To improve the approximation, we test for position continuity of the blending

surface along the boundary of the fillet on the hub. We first find the intersection of the
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T/3 circle with the hub as shown in Section B.3.1. for a cross-link curve constructed

at the midspan between the nodes of the common vector.

U = '' + Ul
(B.3S'

The surface approximation error is

\S(U,v) -H{U,v)\ < v < 1, (B.39)

where H(£,. v) is the intersection point of the T/3 circle on the hub expressed in three

dimensional space, and SU,, v) is the corresponding point on the blending surface. If

the error function is greater than the specified tolerance, e. the point t± is added to

the knot vector. The blending surface is relofted with the enriched knot vector until

the blending surface passes the error test at all points t
x

.
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